
 1

 Cross-Layer Multi-Cloud Real-Time
Application QoS Monitoring and

Benchmarking As-a-Service Framework
Khalid Alhamazani, Rajiv Ranjan, Prem Prakash Jayaraman, Karan Mitra, Chang Liu, Fethi Rabhi,

Dimitrios Georgakopoulos, Lizhe Wang

Abstract— Cloud computing provides on-demand access to affordable hardware (e.g., multi-core CPUs, GPUs, disks, and

networking equipment) and software (e.g., databases, application servers and data processing frameworks) platforms with

features such as elasticity, pay-per-use, low upfront investment and low time to market. This has led to the proliferation of

business critical applications that leverage various cloud platforms. Such applications hosted on single/multiple cloud provider

platforms have diverse characteristics requiring extensive monitoring and benchmarking mechanisms to ensure run-time Quality

of Service (QoS) (e.g., latency and throughput). This paper proposes, develops and validates CLAMBS—Cross-Layer Multi-

Cloud Application Monitoring and Benchmarking as-a-Service for efficient QoS monitoring and benchmarking of cloud

applications hosted on multi-clouds environments. The major highlight of CLAMBS is its capability of monitoring and

benchmarking individual application components such as databases and web servers, distributed across cloud layers (*-aaS),

spread among multiple cloud providers. We validate CLAMBS using prototype implementation and extensive experimentation

and show that CLAMBS efficiently monitors and benchmarks application components on multi-cloud platforms including

Amazon EC2 and Microsoft Azure.

 Index Terms— cloud benchmarking, cloud computing; multi-clouds; cross-layer monitoring; QoS; prototyping

—————————— � ——————————

1 INTRODUCTION

LOUD computing has emerged as a successful com-
puting paradigm and has revolutionized the way

computing infrastructure is virtualized and used [1]. It
offers a flexible access to huge pool of virtually infinite
resources such as processing, storage and network with
practically no capital investment and modest operating
costs, proportional to the actual use (pay-as-you use
model) [2]. The elasticity, pay-as-you-go model and low
upfront investment offered by clouds, have led to the pro-
liferation of number of application providers. For exam-
ple, popular applications such as Netflix and Spotify use
clouds such as Amazon EC2 to offer their services to the
millions of customer’s worldwide.

The success of cloud computing can be attributed to
virtualization that enables multiple instances of virtual
machines (VMs) to run on a single physical machine via
resource (CPU, storage and network) sharing. Thereby,
leading to flexibility and elasticity, as new instances can
be launched and terminated as and when required. Fur-

ther, virtualization also leads to higher security as multi-
ple instances running on a VM runs independently of
each other [20].

The cloud platform is logically composed of three lay-
ers. These include: Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS).
For example, applications such as email and games are
hosted on SaaS layer; applications such as databases and
web servers are hosted on the PaaS layer; and finally, IaaS
include resources such as VMs, network and CPU re-
sources. For the efficient use of cloud resources and to
meet service level agreements (SLAs), it is imperative that
applications and components deployed across all these
layers (*aaS) and possibly distributed across multiple
clouds are monitored at runtime and are benchmarked
[26]. In particular, application developers, system design-
ers, engineers and administrators have to be aware of the
compute, storage, networking resources, application per-
formance and their respective quality of service (QoS)
across all the cloud layers; as QoS parameters including
latency and throughput play a critical role in upholding
the grade of services delivered to the end customers
based on the agreed upon SLAs.

In a cloud computing system, the QoS parameter val-
ues are stochastic and can vary significantly based on
unpredictable user workloads, hardware and software
failures. Thereby, necessitating the awareness of system’s
current software and hardware service status such that
QoS targets of cloud-hosted applications are met [21].
Cloud monitoring and benchmarking can assist in the
holistic monitoring and awareness of applications and

————————————————

• R. Ranjan and P.P. Jayaraman are with the CSIRO Digital Productivity,
Building 108 North Road, Acton-2601, Australia. E-mail: {rajiv.ranjan,
prem.jayaraman} @ csiro.au.

• C. Liu with University of Technology Sydney, Australia. E-mail:
{chang.liu, Jinjun.chen}uts.edu.au

• K. Alhamazani and F. Rabhi are with the School of Computer Science and
Engineering, University of New South Wales. E-mail: {ktal130,Fethir} @
cse.unsw.edu.au.

• K. Mitra is with Luleå University of Technology, Skellefteå Campus, 93187
Skellefteå, Sweden. E-mail:karan.mitra@ltu.se.

• D. Georgakopulos is with Royal Melbourne Instituteo of Technology, Mel-
bourne Australia. Email: dimitrios.georgakopoulos@rmit.edu.au

• L. Wang is with the Chinese Academy of Sciences, Beijing, China. E-mail:
lizhe.wang@gmail.com.

C

components at *aaS layers to meet SLAs [21][23][24][25].
Monitoring is required for [26]: (i) QoS management of
software and hardware resources; (ii) runtime awareness
of the applications and resources for cloud providers and
application developers/administrators; and (iii) detecting
and debugging software and hardware problems affect-
ing applications’ QoS. Additionally, benchmarking can be
used for: (i) understanding application performance (re-
source and network) before application deployment; (ii)
facilitating application base lining; and (iii) enabling con-
tinual comparison of applications QoS performance
against baseline results. Recently, both industry and aca-
demia has focused on cloud monitoring and benchmark-
ing [27-32]. However, most of the approaches are limited
to one cloud provider and/or one cloud layer
(IaaS/PaaS/SaaS).

We assert that in a distributed application hosting en-
vironments such as clouds, there is a need for application
deployment across multi-cloud providers and multi-
layered environments to benefit from resilience and econ-
omies of scale. This necessitates QoS monitoring and
benchmarking at multiple cloud service layers. For exam-
ple, the failure of a particular VM (IaaS layer) affects the
QoS of web application (PaaS layer) or database applica-
tion (PaaS layer) hosted within that VM. This ultimately
affects the QoS of end-user of that web application offer-
ing (SaaS layer). This establishes the need for cloud mon-
itoring and benchmarking framework that is capable of
monitoring applications and components across multiple
cloud layers and across multiple cloud provider envi-
ronments [36]. Further, benchmarking aids in ensuring
that the system’s current performance is as good as its
baseline performance.

A multi-layer and multi-cloud monitoring and bench-
marking system can enable cloud providers and applica-
tion developers to efficiently manage cloud resources and
application components by gaining an in-depth under-
standing of the QoS parameter values across cloud layer
in a multi-cloud setting. The current cloud-application
monitoring frameworks such as Amazon CloudWatch1
typically monitor the entire VM as a black box. This
means that the actual behavior of each application’s com-
ponent is not monitored separately. This renders applica-
tion monitoring with a limited scope where not all com-
ponents distributed across PaaS and IaaS layers are moni-
tored and benchmarked holistically. This limiting factor
reduces the ability for fine-grained application monitor-
ing and QoS control across layers. Further, current cloud
monitoring frameworks are mostly incompatible across
multiple cloud providers. For example, Amazon Cloud-
Watch does not allow monitoring application components
hosted on non-AWS platforms. This defeats the distribut-
ed nature of cloud application hosting. These drawbacks
trigger the significance of having interoperable and multi-
layer enabled monitoring techniques and frameworks.
Finally, current approaches lack the ability to benchmark
application performance deployed different layers allow-
ing the service provider to establish baseline performance

1 http://aws.amazon.com/cloudwatch/

estimates.
Contribution: The key contribution of this paper is to

address an important challenge of cross-layer cloud
monitoring and benchmarking in multi-cloud environ-
ments. In particular, we propose, develop and validate
Cross-Layer Multi-Cloud Application Monitoring- and
Benchmarking-as-a-Service Framework (CLAMBS).
CLAMBS offer the following novel features:

• It provides the ability to monitor and profile QoS
of applications, whose parts or components are
distributed across heterogeneous public or private
clouds;

• It provides visibility into QoS of individual com-
ponents on an application stack (e.g., web server,
database server). In particular, CLAMBS facilitate
efficient collection and sharing of QoS information
across cloud layers using a cloud provider agnos-
tic agent-based technique;

• It provides benchmarking-as-a-service that enables
the establishment of baseline performance of ap-
plication deployed across multiple layers using a
cloud-provider agnostic technique; and

• It is a comprehensive framework allowing contin-
uous benchmarking and monitoring of multi-
cloud, multi-layer hosted applications.

The rest of the paper is organized as follows. Section 2
presents summary of current techniques and frameworks
that support cloud monitoring. Section 3 presents the
CLAMBS system framework for cloud applications moni-
toring and benchmarking. Section 4 presents CLAMBS
deployment models in multi-cloud environments. Section
5 presents the prototype implementation details. Section 6
presents empirical evaluation results of CLAMBS frame-
work. Finally, section 7 concludes the paper.

2 RELATED WORK

In [11], Lattice monitoring framework is presented for
monitoring virtual and physical resources. In this paper, a
managed service is specified as a collection of Virtual Ex-
ecution Environment (VEEs). Hence, Lattice is imple-
mented to be able to collect information for CPU usage,
memory usage, and network usage of each VEE and VEE
host. Moreover, a dependable monitoring facility is pre-
sented in [12], called Quality of Service MONitoring as a
Service (QoS-MONaaS). The focus of QoS-MONaaS ap-
proach is to: (i) continuously monitor the QoS statistics at
the Business Process Level (SaaS); and (ii) enable trusted
communication between monitoring entities (cloud pro-
vider, application administrator, etc.). Furthermore, a
monitoring framework known as (PCMONS) is devel-
oped by incorporating previous frameworks and tech-
niques [14]. PCMONS proves that cloud computing is
viable way of optimizing existing computing resources in
data centers. Also, the paper notes that orchestrating
monitoring solutions on installed infrastructures is viable.
In contrast to above frameworks, CLAMBS focuses on
monitoring and benchmarking applications components
across cloud layers as well as across heterogeneous cloud
platforms. Moreover, current cloud monitoring solutions

lacks an integrated approach to benchmarking. For ex-
ample, cloud harmony2 makes available a benchmarking
performance data of their infrastructure but does not al-
low end-users to benchmark application components. In
[34], authors broadly classify the four areas of bench-
marking application in cloud environments as CPU,
Memory I/O, Disk I/O, and Network I/O. The proposed
CLAMBS framework is driven by these principles of
monitoring resources at application component layer
cloud layers in multi-cloud environment.

In cloud platforms, recent efforts have been put into
improving VMs monitoring and controlling. A number of
frameworks have been proposed for VM management,
which employ Simple Network Management Protocol
(SNMP). SBLOMARS [13] implements several sub-agents
called ResourceSubAgents for remote monitoring. Each of
SBLOMARS’s sub-agents is responsible for monitoring a
particular resource. Inside each of these sub-agents,
SNMP is implemented for management data retrieval. In
contrast to CLAMBS which is focused on monitoring and
benchmarking applications QoS in virtualized cloud
computing environments, SBLOMAR focuses on enabling
multi-constrain resource scheduling in grid computing
environments.

In [15], CloudCop is a conceptual network monitoring
framework implemented using SNMP. Basically, Cloud-
Cop adopts Service Oriented Enterprise (SOE) model.
CloudCop framework consists of three components:
Backend Network Monitoring Application, Agent with
Web Service Clients, and Web Service Oriented Enter-
prise. While CloudCop focuses on network QoS monitor-
ing, CLAMBS is concerned with application QoS monitor-
ing. In [16], the authors propose a Management Infor-
mation Base (MIB) called Virtual-Machines-MIB, to define
a standard interface for controlling and managing VM
lifecycle. It presents SNMP agents, which are developed
based on NET-SNMP public domain’s agent. Besides
read-only objects, Virtual-Machines-MIB provides read-
write objects that enable controlling managed instances.
To obtain the data of Virtual-Machines-MIB, mostly Lib-
virt API and other resources such as VMM API are used
[16]. While Virtual-Machines-MIB is concerned with mon-
itoring IaaS-level (VM) QoS statistics, it does not cater for
the QoS statistics of PaaS level application components.

In [17], the authors stress the importance to have a
standardized interface for monitoring VMs on multiple
virtualization platforms and this interface should be
based on SNMP. The paper presents a framework for
VMs monitoring which is fundamentally based on SNMP.
The proposed work was built over three different VM
hypervisors namely, VMware, Xen, and KVM. These
three hypervisor were installed on two different OSs,
which are MS Windows and Linux. Similarly to Virtual-
Machines-MIB, this framework utilizes Libvirt API.
Moreover, it implements an agent extension AgentX us-
ing Java. Primarily, this AgentX is to obtain VMs man-
agement data for the VMware, Xen, and KVM VMs and
eventually the data is presented via web-based manage-

2 https://cloudharmony.com/services

ment. However, similar to [16], the approach given in [17]
focuses on VM-level QoS monitoring, while completely
ignoring application component level QoS management
and monitoring. In addition to the mentioned works
above, libvirit-snmp is a subproject, which primarily pro-
vides SNMP functionality for libvirt. Libvirt-snmp allows
monitoring virtual domains as well as it allows setting
domain’s attributes. Furthermore, Libvirt-snmp provides
a simple table containing monitored data about domains’
names, state, number of CPUs, RAM, RAM limit CPU
time.

In cloud environments, traditional benchmarking ap-
proaches cannot serve the users’ needs [35]. Besides
runtime performance, cloud specific attributes such as
elasticity, deployment, resiliency, and recovery are re-
quired to be reflected in benchmarking process [35]. Fur-
ther, benchmarking applications distributed in multi-
cloud environments is a complex task as each application
requires evaluation of distinct QoS metrics from others in
order to evaluate the targeted cloud performance. Moreo-
ver, each application has its own workload requirements
for each individual component rendering the need for a
general-purpose benchmark framework. A specific pur-
pose-built benchmarking component will not be able to
serve cloud users having variety of use cases in cloud
environment.

Authors in [33], put a notable effort on the design and
the simplicity of using C-MART, which is, a web applica-
tion benchmarking tool. C-MART presents a significant
tool emulating, and then benchmarking web applications
such as online store or social networking website. Origi-
nally, C-MART is motivated by the fact that benchmarks
need to cope up with the shift from the traditional envi-
ronments to cloud environments. However, C-MART is
limited to benchmarking web application at the PaaS lay-
er.

Amazon EC2 compatible C-Meter was the original pro-
totype of the EC2 current extensible cloud benchmark
framework [36]. It employs low level metrics that are typ-
ically not visible to general cloud users. Therefore, C-
Meter is unsuitable to evaluate higher levels of cloud ser-
vices (e.g. PaaS and SaaS) [36]. Despite of metrics Cloud-
Cmp [37] can measure, authors in [35] stated that some of
the metrics provided by CloudCmp are too experimental
to be meaningful to cloud user, e.g. time to consistency.
CloudGauge [38], presents an effective dynamic virtual
machine benchmarking tool. It provides automated
scripts to provision and measure the performance of the
virtual environment setup. But, the focus of CloudGauge
experimental benchmark was on the virtualization layer.
Furthermore, the data collected were mainly CPU usage
and average load Memory.

To guarantee the SLA and to avoid failure, the chal-
lenge is to identify which component of the application
needs to be re-configured or what type of auto-scaling is
required, To this end, we need a better understanding of
individual component’s performance accurately to help
cloud orchestrator to effectively scale the corresponding
layer at the appropriate time. The proposed CLAMBS
model benchmarking and real-time monitoring as-a-

service system is a practical method to understand and
evaluate how application components distributed across
cloud layers in multi-cloud environments can essentially
perform and handle their tasks.

3 CLAMBS: CROSS-LAYER MULTI-CLOUD

APPLICATION MONITORING AS A SERVICE

Overview

Fig. 1 presents an overview of the proposed CLAMBS
framework. As depicted in the figure, CLAMBS employs
an agent based approach for cross-layer, multi-cloud re-
source/application monitoring and benchmarking. In this
multi-cloud approach, monitoring and benchmarking
agents are deployed across various cloud provider envi-
ronments based on application requirements and de-
ployments.

A CLAMBS agent is responsible for monitoring and
benchmarking application QoS parameters such as re-
source consumption, network performance, storage per-
formance etc at various layers including SaaS, PaaS and
IaaS. On the other hand, CLAMBS manager is responsible
for orchestrating and collecting QoS data from each moni-
toring and benchmarking agent.

CLAMBS Model

CLAMBS include mechanisms for efficient cloud monitor-
ing and benchmarking applications deployed at *aaS lay-
ers. CLAMBS provides standard interfaces and communi-
cation protocols that enable application/system adminis-
trator to gain awareness (benchmark and monitor against
benchmarking outcomes) of the whole application stack
across different cloud layers in heterogeneous, hybrid
environments (different resources constraints and operat-
ing systems). The CLAMBS approach also addresses the
challenges in interoperability among heterogeneous cloud
providers. Fig. 2 presents a detailed architecture of the
proposed CLAMBS framework. The CLAMBS framework

comprises three main components namely, Manager,
Monitoring Agent and Benchmarking Agent.

A. Manager

The CLAMBS Manager is a software component that
performs two operations: 1) it collects QoS information
from Monitoring Agents; and 2) it collects benchmarking
information from benchmarking agents running on sev-
eral virtual machines (VMs) across multi-cloud providers
and environments. In case of monitoring, the manager
collects QoS parameter values from the monitoring agents
running at the *aaS layers. The communication between
the manager and the agents can employ a push or pull
technique. In case of pull technique, the manager polls the
CLAMBS monitoring agents at different frequency to col-
lect and store the QoS statistics in a local database (DB).

When a push strategy is employed, the agents obtain
the relevant QoS statistics and push the data to the Moni-
toring manager based on a predetermined frequency. As
soon as the monitoring system is initialized in the
cloud(s), the VMs running the CLAMBS manager(s) and
the monitoring agents boot up. Using discovery mecha-
nisms such as broadcasting, selective broadcasting or de-
centralized discovery mechanisms [20], the agents and
manager discover each other. After discovering the ad-
dress of each agent and manager, depending on the avail-
able strategy (push/pull), QoS statistics is collected by the
manager from the agents.

To illustrate further, consider a web multimedia appli-
cation service hosted on multiple cloud providers for ex-
ample in US Virginia, and AU Sydney. The users can
search the multimedia content and can retrieve the de-
sired content via the web application. Such a web multi-
media application comprises the media storage for con-
tent distribution at the IaaS layer, a database server for
media search and indexing at PaaS and a web interface at
the SaaS layer. The media and the database servers are
hosted at the PaaS layer, whereas, the media content is
stored at the storage server at IaaS layer. Each component

Figure 1: Overview of CLAMBS Model

of the web application is running and hosted on different
VMs. Media server has an IP address say, 192.168.1.1,
indexing server has an IP address 192.168.1.2, and the
storage server has IP 192.168.1.3. Each VM also runs
CLAMBS monitoring agents that monitor applications
and VM parameters (e.g. CPU, Storage and Memory). In
this case, the manager can send first request to the agent
on the media server VM specifying the IP address
192.168.1.1:8000 and stating the QoS target e.g., CPU utili-
zation. Similarly, a second request is sent to the agent on
the indexing server VM specifying the IP address
(192.168.1.2:8000) and stating the QoS target e.g., Packets
In. In the same way, a third request is sent to the agent on
the storage server VM specifying the IP address
(192.168.1.3:8000) and stating the QoS target e.g. actual
used memory.

The CLAMBS manager employs a QoS data collection
schema to store QoS statistics collected from monitoring
agents into the local database and an agent schema to
maintain the list of discovered agents. The second opera-
tion is performed by the CLAMBS Manager to facilitate
benchmarking of applications distributed across *aaS lay-
ers in multi-cloud environments. The manager’s bench-
marking function is a software component that collects
network and application performance QoS information
from CLAMBS benchmarking agents that are distributed
and running on several VMs hosted across multi-cloud
environments in different data centers. In particular, the
manager collects the traffic QoS values from agents host-
ed on VMs that are distributed across different data cen-
ters.

The benchmarking component of the manager is re-
sponsible for firing VMs at remote data centers to per-
form application level benchmarking based on user re-
quirements that include data center locations. For exam-
ple, consider a scenario where an end user located in Sin-
gapore, requests multimedia content from the web mul-

timedia application service. Typically, such application
components could be distributed across multiple datacen-
ters. The CLAMBS framework supported by the manager
is able to dynamically fire a VM hosting the benchmark-
ing agent at the end user location, Singapore. Then the
CLAMBS manager can repeatedly test and benchmark the
performance of the web application at both the locations
(US Virginia, and AU Sydney) to select the best location
to serve the multimedia content to the end user. This ap-
proach serves the following two main purposes: 1) it al-
low users who use third-party cloud hosting services to
benchmark application performance for later comparison
and evaluation; and 2) it allow users to test the system’s
performance automatically and choose the best perform-
ing data center for service delivery. The key advantage of
CLAMBS here is the ability to dynamically run bench-
marking of application at *aaS layers of multiple clouds
automatically with very little configuration required from
the user. The CLAMBS manager also incorporates an API
that is used by other monitoring manager or external ser-
vice to share the QoS statistics.

B. CLAMBS Monitoring Agent

Another major component of the CLAMBS framework is
the monitoring agent. The monitoring agent resides in the
VM running the application and collects and sends QoS
values as requested by the manager. After the monitoring
system initialization, the agent waits for the incoming
requests from the manager or starts to push QoS data to
the manager. Upon arrival of the request, the agent re-
trieves the stated QoS values belonging to a given appli-
cation process and/or a system resource and sends them
back as a response to the manager.

The monitoring agent has the capability to work in
multi-cloud heterogeneous environments. Agent manager
communication can be established using any approach
that fits the application requirement e.g., publish- sub-

Figure 2: CLAMBS Framework Architecture

scribe, client- server or web services. It can also employ
standardized protocols for communicating system man-
agement information like SNMP. The proposed blueprint
does not restrict future developers from extending
CLAMBS to their purposes. In our proof-of-concept im-
plementation explained later, we demonstrate the imple-
mentation of the CLAMBS framework using a combina-
tion of SNMP and RESTful Web services. The CLAMBS
monitoring agent also uses operating system dependent
code to fetch corresponding application QoS statistics, for
example, use of OS specific commands to get CPU usage
in Linux and Windows systems respectively.

C. CLAMBS Benchmarking Agent

The third component of the CLAMBS framework is the
benchmarking agent. This agent has the capability to mi-
grate from the manager VM to a VM that either hosts the
application/service or act as a client to the service. The
benchmarking agent incorporates standard functions to
measure the network performance between the data cen-
ter(s) hosting the application service and the client. The
benchmarking agent also incorporates a load-generating
component that generates traffic to benchmark the appli-
cation based on a workload model. The load generator
part of the benchmarking agent is able to generate load on
applications such as DBMS and Web Servers. For exam-
ple, generating requests to a web server (N users and M

requests/second) based on a website workload model
(e.g. football world cup trace -
http://ita.ee.lbl.gov/html/contrib/WorldCup.html). The
benchmarking agent has the capability to work in multi-
cloud heterogeneous environments.
In essence, objectives that require benchmarking process
are: i) determining where and what type of performance
improvements are needed, ii) analyzing the available
metrics of performance, iii) using benchmarking infor-
mation order to improve the services performance, and
iv) comparing the benchmarking information with the
standard measurements. Thus, to benchmark cloud appli-
cations (e.g. web application), providers can apply a
workload on such application’s distributed components.
Compared to the state-of-the-art research, CLAMBS
benchmarking functionality is an additional dimension
alongside monitoring. This means that CLAMBS is one of
a kind unified framework incorporating monitoring and
benchmarking as-a-service capabilities based on distrib-
uted agents across multi-cloud platforms.

4 MODELING AND ANALYZING CLAMBS

OVERHEADS IN MULTI-CLOUD ENVIRONMENTS

As mentioned previously, the CLAMBS monitoring
framework is aimed to be agnostic of the underlying
cloud platform i.e., the manager/agent may run on heter-
ogeneous cloud platforms. In case the monitored frame-
work is distributed across different cloud platforms e.g.,
Amazon cloud platform and Windows Azure platform,
then one manager and multiple agents will be residing on
each of these cloud platforms. Hence, it is important to
model the overheads introduced by the distribution of
CLAMBS in multi cloud environments.

Communication Overhead

The communication overhead depends on the physical
locations of managers i.e., data center where CLAMBS
Agents are distributed across different data centers. We
have n data centers��, ��, … , ��. For a data center D� ,
there are m� VMs running:
�,�, … ,
�,�. As each VM is
accompanied by a CLAMBS agent, we denote the agents
as ∀�= ∀�,�, … , ∀�,� . The size of one CLAMBS Agent mes-
sage from ∀�,� is ��,�. Location and deployment of
CLAMBS agents and managers will vary. When there is
one CLAMBS manager � located on data center ��,	� ∈�1, �� (See Fig.3.1): each of the agent ∀�,� VM has to com-
municate with the manager independently; thus, total
communication overhead from CLAMBS agents to
CLAMBS manager in one report will be as following:
 ∑ ��∑ ��,�� � − ��,� � , ! = 1,… , �; 	# = 1,… ,$� 														(1)

If the message size is a fixed value M then CLAMBS
messages communication overhead is M ⋅ �'∑ m�� (− m)�, i = 1,… , n	'2(

In the above formulas, messages of agents located in π
are excluded being in the same data center where
CLAMBS Manager is running. Furthermore, for optimiza-

Figure 3.1: Communications: 3 data centers, manager � located

on
�,�

Data Centre1

:
:
:

�,�

�,�

�,�.

Data Centre3

:
:
:

/,�

/,�

/,�0

Data Centre2

:
:
:

�,�

�,�

�,�1

Figure 3.2: Communications: 3 data centre, manager � located

on
�,�

Data Centre1

:
:
:

�,�

�,�

�,�.

Data Centre3

:
:
:

/,�

/,�

/,�0

Data Centre2

:
:
:

�,�

�,�

�,�1

tion, these messages may not be needed for every report.
This will take place when CLAMBS agent process data
analysis before sending data. Therefore, when changes
occur to data then they will be reported to CLAMBS
manager. Thus, If only a subset S� of ∀� is reporting each
time, CLAMBS communication cost will be reduced
greatly.

Let Π� be the bandwidth (connection speed) for data
center D�. The total time consumption in communication
(when all CLAMBS messages are sent simultaneously at
fixed time slots) is: MAX� �MAX��6� ∙ ��,�� (3)

 MAX� �MAX����,�/6�� 																		 (4)

Therefore it is possible to develop adaptive algorithms to
reduce reports from agents ∀�,9 with large Π� ∙ M�,9 to save
time, at the cost of CLAMBS messages info. As they are
all variable, the criteria could be an average from history.
This is a possible way to decide S� for every agent report.

When there are n distributed CLAMBS managers/sub-
managers located across different data centers (See Fig.
3.2), the cost is significantly reduced. Ideally, n managers ��, ��, … , �� are located in different data centers. Although
management task is distributed, a super manager is still
needed for maintaining a centralized database. Let's say
the super manager is �� ∈ :��, ��, … , ��;. In this case, if the
message size from �� is �� , then the total communication
overhead for each round is reduced to ∑ ��� . However,
the optimization in communication overhead also brings
other trade-offs or compromises such as in setting up and
switching additional managers, CPU load, response time,
etc. We now discuss further in the following section.

CPU, Response and Search Time

The distributed CPU load will be determined by the lay-
out of agents. We will also compare the standard one-
manager layout (model (1), see Fig.4.1) against the hierar-
chical tree-typed manage structure (model (2 & 3), see
Fig.4.2, 4.3). The total number of agents is N and the max
number of child nodes per node is n. The CPU load for
managing one CLAMBS message is C. If there are a total
of l levels of the tree control structure, then: < ≥ >log�'B ∙ '� − 1(+ 1(D															 (5)
the inequality turns into an equality when the tree is a
complete tree in its top < − 1 levels. In model (1) (Fig 6.1),
CPU load for the super manager per round is 'B − 1(∙ E
and other nodes is 0. In model (2) (Fig 6.2), max CPU load

for super manager will be ∙ E , and at least >'B − 1(/�D
other managers will also take over a maximum CPU load
of � ∙ E each. Whatever the load distribution, as the same
total number of agents are returning the same amount of
CLAMBS data, the overall CPU load will remain the
same. In other words, a larger n will incur less managers
to participate and increase the load for each manager.
Smaller n will improve the distribution, but l will also
increase so that the response time will grow.

The response time will be determined by the time for a
node used to reach super manager for it to react on unu-
sual behaviors. If the time for a node (agent) ∀ to contact
its manager is t (including processing and communica-
tion), then in (1) all response time is t. In (2), the response
time will grow for most nodes. The response time for
node ∀ will be <∀ ⋅ F where <∀ is the level of ∀. Under this
model, it's easy to observe that a larger n will cause less
number of higher-response-time nodes, therefore smaller
total response time. As the response time for most indi-
vidual nodes will grow, the total response time for all N
nodes will also grow. Instead of 'B − 1(F, the total time FGHGIJ satisfies:

tGHGIJ ≥ t ∙ �∑ i ⋅ n�JL��M� + 'l − 1(⋅ �N − ∑ n9JL�9MO � 	
= t ∙ P'l − 2(nJ − 'l − 1(nJL� + n'n − 1(� + 'l − 1(

⋅ QN − nJL� − 1n − 1 RS		

= t ∙ P'l − 1(∙ N − nJ − ln + l − 1'n − 1(� S	'6(
Therefore, the average response time tIUV for N − 1

nodes other than the super manager satisfies

tIUV ≥ G
WL� ∙ Q'l − 1(∙ N − XYLJXZJL�

'XL�(1 R	'7(
As before, the inequalities turn into equalities if and

only if the tree is a complete tree in the top l − 1 levels.
We can see that given a fixed N, when n decreases or l
increases, the average response time will grow. Note that
here t is considered a constant value. In practice, commu-
nication overhead will also affect response time of each
node. Therefore, minimizing inter-data center communi-
cations as shown in communication overhead analysis

......

(1) (2) (3)

Figure 4. Different management structures for 17 agents

will also help in a lowering response time.
Another metric is the average search time. Similar to a

search tree, the (minimum) average search time for the
super manager to find a leaf node in (2) is log�B (for a
complete tree), as opposed to ''B − 1(/2(∙ F in (1). There-
fore, the search time will also benefit from a larger n.

To sum up, we can see that the two deployments of
agents have their own advantages and disadvantages. To
achieve deserved performance, the system setup will de-
pend on the actual requests and different metrics such as
communication overhead, CPU load distribution, average
response time analyzed in this section.

5 CLAMBS: SYSTEM IMPLEMENTATION

The proof-of-concept implementation of the proposed
CLAMBS framework has been developed using Java and
is completely cross-platform interoperable i.e., it works
on both Windows and/or Linux operating systems.

Monitoring Agent Implementation: The process of re-
trieving QoS targets is done by utilizing functionalities
provided by SNMP, SIGAR, HTTP and other custom built
APIs. For instance, SNMP is used to retrieve the QoS val-
ues related to networking, number of packets in and out,
route information and number of network interfaces. SI-
GAR is used to obtain access to low-level system infor-
mation such as CPU usage, actual used memory, actual
free memory, total memory and process specific infor-
mation (e.g. CPU and memory consumed by a process).
Moreover, network information such as routing tables can
also be obtained using SIGAR. Both SIGAR and SNMP
packages have their own operating system specific im-
plementations to retrieve system information e.g. system
resources, and user processes. To enable SNMP monitor-
ing, we define new SNMP Objects Identifiers (OIDs) in a
sequence. For example function to get the CPU usage of a
specific process (tomcat) is assigned an OID
.1.3.6.1.9.1.1.0.0. Similarly, function to get process
memory is assigned an OID .1.3.6.1.9.1.1.0.1. The
CLAMBS implementation also incorporates a HTTP
based Restlet communication standard. This allows great-
er flexibility to monitor application that does not support
the network specific SNMP protocol.

Manager Implementation: The manager uses a MySQL
database to store the QoS statistics collected from the
monitoring and benchmarking agents. For the proof-of-
concept implementation, we used a pull approach where
the Manager is responsible to poll for QoS data from
agents distributed across multiple cloud provider VMs.
The manager uses a simple broadcasting mechanism for
agent discovery. On booting, a discovery message is
broadcasted to the known networks. Agents that are
available respond to the manager’s request. The manager
then records agent information to the agent database. The
manager then starts off threads to query each agent in the
agent database to obtain QoS parameters. The polling
interval is a pre-defined constant and can be changed us-
ing the manager configuration files. Utilizing Java func-
tionalities, the manager is implemented based on the net
package which is provided by Java libraries. This library

is responsible of most network communication functions
and requirements. It provides the superclass URLConnec-
tion which represents a communication link between ap-
plications and Uniform Resource Locator (URL). There-
fore, each manager’s request will have two main compo-
nents which are protocol identifier and resource name.
The benchmarking component of the manager can meas-
ure the QoS parameters including Network Latency,
Network Bandwidth, Network download speed, and
Network upload speed. We have also incorporated REST-
ful-based API’s allowing external services/applications to
query monitoring and benchmarking data.

Benchmarking Agent Implementation: Benchmarking
agents are bootstrapped with the VMs and distributed
across different cloud platforms e.g. Amazon and Azure.
On booting VMs, agents start up and wait for incoming
requests from the manager to start benchmarking. Typi-
cally, there is a unique IP address for each agent repre-
senting the VM location. The port used for communica-
tion by the benchmarking agents is 80 as the protocol
identifier in our implementation for communication is
HTTP. The server component we integrate to run the
agents is Apache Tomcat. Upon requests by the manager,
the agent starts its role which includes download/upload
objects from remote server. Essentially, the agent is capa-
ble of handling requests from more than one sub-manger
in case of hierarchal architecture are adopted where sub-
manager and one super manager are in use. The bench-
marking agent also incorporates the load generator. This
component of CLAMBS is essentially implemented using
the JMeter package developed in Java. In this implemen-
tation we designed our prototype to generate web appli-
cation server traffic using HTTP requests. The system also
supports SQL load generation. In case of HTTP workload,
HTTP sampler is provided along with the domain, port
number, path, and the request method (e.g. POST or
GET). Similarly, in case of the SQL workload, SQL sam-
pler, query, query type (insert, update, or select), data-
base URL, and database driver are provided. Loop con-
troller is specified according to the aimed workload sce-
nario. This also applies to the thread group and the num-
ber of threads that will perform the intended workload.
Seamlessly, CLAMBS load generator prototype is imple-
mented to be able to reach the targeted components
across different cloud platforms.

Agent Manager Communication: For the proof-of-concept
implementation, the communication between the agent
and the manager has been implemented using two tech-
niques namely RESTful Web services and SNMP. Having
a RESTful approach enables easy lightweight communica-
tion between CLAMBS agents and manager/super man-
ager. Using a standardized SNMP interface makes
CLAMBS completely compatible with existing SNMP-
based applications, tools and systems and reduces the
effort involved in collecting QoS statistics.

6 CLAMBS: EXPERIMENTS AND RESULTS

Hardware and Software Configuration

To evaluate the CLAMBS framework, experiments were

conducted on Amazon AWS and Microsoft Azure plat-
forms. We used standard small instances on each plat-
form. The AWS instance has the following configurations:
619 MB main memory, 1 EC compute unit e.g., 1 virtual
core with 1 EC2 compute unit, 160 GB of local instance
storage, and a 64-bit platform. The Azure instance has the
following configurations: 768 MB main memory, 1GHz
CPU (Shared virtual core) and a 64 bit platform. Three
different data centers are considered in this experiment,
namely, Sydney, US-Virginia, and Singapore. CLAMBS
Manager was located in Sydney. One CLAMBS agent was
hosted on a VM at US-Virginia data center and another
CLAMBS agent is hosted on a VM in Singapore data cen-
ter. VM’s in the experiments were running Microsoft
Windows Operating System. For persistent storage of
CLAMBS agent and manager data, we used off storage
volumes such as Elastic Block Store (EBS) in Amazon EC2
and XDrive in Windows Azure. Major advantages of ar-
chitecting applications to adopt off instance storage are: i)
each storage volume is automatically replicated, and this
prevents data loss in case of failure of any single hard-
ware component; and ii) storage volumes offer the ability
to create point in time snapshots, which could be persist-
ed to the cloud specific data repositories.

Experimental Setup

As discussed previously, the CLAMBS system has three
main components namely the Manager, Monitoring agent
and Benchmarking agent. In this section, we present the
experimental scenario and setup of the monitoring and
benchmarking agents. In both cases, the manager is re-
sponsible to collect monitored and benchmarked QoS
parameters.

To evaluate and validate CLAMBS system, we consid-
er a web multimedia application that uses a content dis-
tribution network to distribute multimedia content to
end-users using a multi-cloud provider setup (e.g. com-
bination of Amazon AWS and Windows Azure). We em-
ploy CLAMBS approach to benchmark and monitor the
performance of the web multimedia application compo-
nents namely the search and indexing server (Tomcat
web server and MySQL database) and network QoS pa-
rameters including network latency and download and
upload performance.

Monitoring Agent Setup: Each monitoring agent com-
prises the corresponding SNMP and SIGAR package de-
pendencies to accomplish the monitoring task. In the
experiment, the monitoring manager triggered a request
to monitoring agents, which in turn retrieved the request-
ed QoS parameters from the hosted VM. Each agents
running on the VM listened on a unique port e.g. VM1-
IP:8000, VM1-IP:8001, enabling them to respond to que-
ries from the monitoring manager independently. The
agents sent responses to the monitoring manager concur-
rently. For experimental purposes and to demonstrate
and validate CLAMBS cross-layer monitoring capability,
each agent monitored several resources including system
resources and user processes

Table 1 presents the list of monitored process-
es/resources. On retrieving QoS data from the agents, the

monitoring manager saved the data into the local data-
base by classifying them as system performance or user
applications QoS performance parameters.

Table 1: Monitoring across different layers

Process/Resource Description Owner

Tomcat7w.exe Apache Tomcat 7 User

MySqld.exe MySQL Workbench 6.0 User

Javaw.exe Monitoring Manager User

Lsass.exe Local Security Authori-

ty Process

System

Winlogon.exe Windows Logon App. System

Services.exe Services and Controller

App.

System

VM CPU Usage CPU usage of the entire

VM

System

VM Memory Usage Memory usage of the

entire VM

System

Benchmarking Agent Setup: The benchmarking agent is

composed of two components which are network traffic
benchmarking and CLAMBS load generator. Each agent
comprises the corresponding required Java packages de-
pendencies to accomplish the benchmarking task. In this
experiment setup, we test the network QoS parameters
that links the CLAMBS manager and the benchmarking
agents. Benchmarking the network link connecting an
agent and the CLAMBS manager was accomplished by
generating bi-directional traffic to simulate download and
upload processes. We ran this experiment to demonstrate
CLAMBS ability to benchmark network performance be-
tween two different locations of data centers.

In our experiments, the CLAMBS manager triggered
the benchmarking requests to CLAMBS benchmarking
agents, which responded immediately to the manager’s
request. Communications between CLAMBS manager
and agents were conducted using the RESTful HTTP pro-
tocol. Pre-defined files with varying sizes (50 MB, 100MB,
and 200MB) were used during the experiment to measure
network performance over a download/upload process-
es. Table 2 lists the measurements parameters that were
observed throughout the experiment. According to our
conceptual framework, such measurements provide the
user with the ability to decide and choose a preference of
what site/location a service is performing better. Like-
wise, a service provider will certainly acquire such
knowledge in order to improve the delivered service
quality to clients.

Runtime Configuration Monitoring Agent: Monitoring

agents as well as manager are packaged into jar files with
corresponding dependencies and configured to run dur-
ing VM boot process. The agents use a configuration file
that specifies processes to monitor. Based on this infor-
mation, at run-time, the agent determines the process id
of the respective process. After finding the process id, the
agent starts to retrieve specific QoS parameters for that
process e.g. memory usage and CPU consumption.

 Table 2: Benchmarking Measurements

Traffic Benchmarking
Measurement Parameter

Description

Download File Network

Latency Time

Time consumed starting

from a request up-till down-

load complete including

Network Latency

Upload Network Bandwidth Amount of data transferred

per Second while download

process

Upload File Network Laten-

cy Time

Time consumed starting

from a request up-till upload

complete including Network

Latency

Upload Network Bandwidth Amount of data transferred

per Second while upload

process

Fig. 5 provides a detailed workflow of communication

between the monitoring manager and agent. The moni-
toring manager instantiated parallel threads for each
group of Agents in one VM i.e., each thread was dedicat-
ed to only one VM to communicate with Agents running
on that VM. Manager thread sent requests to agents ad-
dressed by IP address and port number. The request was
for a list of QoS parameters monitored by the agent. After
receiving the request, agents compute the QoS parameter
values from the hosting VM. The agents then respond to
the manager with corresponding QoS parameters.

To evaluate the proposed CLAMBS framework, we
deployed the agents and managers on four virtual ma-
chine instances (3 VM’s on AWS and 1 on Microsoft Az-
ure). On VM’s that hosted the agent, depending on num-
ber of agents, the agents were bound to unique ports. E.g.,
if VM-3 hosted 30 Agents, it was bound to ports 8000-
8030. Similarly if VM-4 hosted 10 agents, it was bound to
ports 8000-8010.

Runtime Configuration Benchmarking Agent: CLAMBS
manager and agents are packaged into runnable jar and
war files with corresponding dependencies and config-
ured to run during VM boot process. The agents use a
configuration file that is required to run and remain
standby waiting for the manager requests. Intervals of
requests can vary but initially is set to 10 seconds for each
request sent to a single CLAMBS agent. Agents in turn
take immediate response towards CLAMBS manager re-
quest. Definite data with pre-chosen sizes are stored local-
ly in each VM hosting CLAMBS manager and CLAMBS
agents to be utilized for data transferred during the ex-
periment. Fig. 6 provides a detailed workflow of commu-
nication between the CLAMBS manager and agents in
different data centers. The manager instantiated parallel
threads for each agent addressed by IP address and the
port number . Concurrently, CLAMBS manager send sim-
ilar requests to other registered agents in different data
centers which can also be in a different cloud platform.

Experimental Results and Discussion

CLAMBS Monitoring Agent

To validate that the CLAMBS monitoring agent does not
introduce significant overheads while monitoring QoS
parameters across layers in multi-cloud environments, we
ran experiments in 4 typical multi-cloud workload sce-
narios.
Scenario I: VM-1 hosts the Manager, VM-2 hosts 25

Agents, VM-3 hosts 30 Agents, and VM-4 hosts 30
Agents. In total, the manager communicates with 85
Agents deployed in multi-cloud environment (3 AWS
instances and 1 Azure instance).
Scenario II: VM-1 hosts the manager, VM-2 hosts 10

agents, VM-3 hosts 20 agents, and VM-4 hosts 20 agents.
In total, the manager communicates with 50 Agents.
Scenario III: VM-1 hosts the manager, VM-2 hosts 10

Agents, VM-3 hosts 10 Agents, and VM-4 hosts 10
Agents. In total the manager communicates with 30
Agents.
Scenario IV: VM-1 hosts the manager, VM-2 hosts 1

agent, VM-3 hosts 1 agent, and VM-4 hosts 3 agents. In
total the manager communicates with 5 Agents.

Figure 5: Manager/Agents run-time workflow

Figure 6. CLAMBS Benchmarking components communica-

tion

For each scenario, we monitored the CPU and memory
consumption of the monitoring manager. The result of the
experiments is presented in Fig. 7 and 8. We computed
the average CPU and memory utilization by the Manager
for each scenario. Each evaluation scenario involving
communication between agents and manager was run for
duration of 30 minutes. The frequency of querying the
agents for QoS parameters was set to 1 second. The out-
comes clearly indicate that the manager performance is
stable with increase in the number of active agents. The
CPU utilization grows up from 6.25% when manager is
communicating with 5 Agents to 10.92% when the num-
ber of agents is 85. Likewise, memory consumed by the
manager increased marginally from 177.5 MB with 5
agents to 177.85 MB with 85 agents. Moreover, we note,
the manager or the agents during the experiment did not
encounter any crash or malfunction. These outcomes
clearly validate the resource efficient operation of the
CLAMBS framework and its ability and suitability to
scale across multi-cloud environments.

In essence, we are motivated by the fact that there is a
need for monitoring specific processes across cloud layers
in multi-cloud environments. The proposed framework
namely CLAMBS demonstrates its capability to achieve
this goal by enabling cross-layer monitoring in multi-
cloud environments. Experimental evaluations of the
CLAMBS framework show a steady scalability of the

monitoring manger while handling data from 5, 30, 50
and 85 agents simultaneously. Additionally, we note that
the resource requirements of the CLAMBS agent did not
increase significantly when testing in environments with
5 and 85 agents.

CLAMBS Benchmarking Agent

To demonstrate CLAMBS benchmarking ability, we
benchmark the network performance between data cen-
ters in different locations based on the experimental setup
presented earlier.

Data Download Latency- Concurrently, CLAMBS man-
ager starts downloading data from agents in Singapore
and US-Virginia data centers. Each request indicates what
size of data is to be downloaded (50MB, 100MB, or
200MB). As presented in Fig. 9, CLAMBS agent in Singa-
pore data center provided faster data download compar-
ing to CLAMBS agent in US-Virginia. Moreover, we ob-
served that as the data size increase, the data transfer la-
tency from CLAMBS agent in US-Virginia also increases.
Such observations are expected to have a major impact on
both service provider and service client.

Data Upload Latency – experiments as shown in Fig. 10
demonstrates how network traffic benchmarking has the
potential to drive preferences of both service provider
and service client. Uploading 50MB, 100MB, and 200MB
files from Sydney to Singapore show shorter latency
times comparing to uploading the same size of data to
US-Singapore.

Download/Upload Bandwidth – experimental results as
shown in Fig. 11, presents the outcome of up-
load/download bandwidth between Singapore, Sydney
and US-Virginia. With 50MB, 100MB, and 200MB size of

Figure 7: Manager Memory Utilization in MB

Figure 8: Manager CPU Utilization in Percentage

Figure 9. Data Download Network Latency (Time in Seconds)

Figure 10. : Data Upload Network Latency (Time in Seconds)

data being transferred, network bandwidth between Syd-
ney and Singapore remains the same at 8 KB/s. Similarly,
the network bandwidth between Sydney and US-Virginia
is 6 KB/s for the different data sizes transferred. Alt-
hough, this is basically a proof-of-concept where the
CLAMBS benchmarking capability enables the user to
prefer a location over another, in our experimentation
scenario Singapore site measured significantly better per-
formance over US-Virginia.

Analysis - Referring to AWS documentation, network
performance for small instance types are low. Moreover,
such types of instances are not listed under eligible in-
stances for enhanced network performance. Unlike other
instance types (e.g. c3.large, c3.xlarge, c3.2xlarge,
c3.4xlarge, c3.8xlarge, i2.xlarge, i2.2xlarge, i2.4xlarge,
i2.8xlarge, r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, or
r3.8xlarge), small instance type does not have a feature of
enabling enhanced network performance. This limitation
was reflected by our experiments by having low network
bandwidth across different data centers. Furthermore,
VM requests serving priority by the hosting server at
Amazon platform is low which means that the perfor-
mance is minimal for such small instances.

CLAMBS Manager Scalability under Benchmarking- We
also computed the average CPU and memory utilization
by the CLAMBS Manager while performing benchmark-
ing of application’s network performance. We used a file
size of 100 KB enabling us to repeat the operation of data
transfer between manager and agents located in different
in remote data centers locations. In this scenario, we uti-
lized the CLAMBS monitoring agents to monitor the per-
formance of the CLAMBS manager. Fig. 12 shows the
outcome of our experiments. As indicated by the experi-
mental outcome and similar to the Manager’s perfor-
mance while monitoring, the overheads imposed by the
benchmarking component of the manager on the underly-
ing system memory consumption is not very significant.
The CPU consumption of the manager during bench-
marking scenario was also not significant and ranged
between 2 – 5%.

The experimental outcomes validate the CLAMBS
framework’s ability to be a reliable, resource efficient
cross-layer monitoring and benchmarking system that
can scale across multiple cloud provider environments.

7 CONCLUSION

This paper presented CLAMBS, a novel cross-layer multi-
cloud application monitoring and benchmarking as-a-
service framework. CLAMBS enables efficient QoS moni-
toring and benchmarking of cloud application compo-
nents hosted on multiple clouds and across multiple
cloud layers. Using experimentation and prototype im-
plementation, we show that CLAMBS is flexible and re-
source efficient and can be used to monitor several appli-
cations and cloud resources distributed across multiple
clouds.

As future work, we intend to integrate CLAMBS with-
in a cloud orchestration framework to provide QoS-
awareness for cloud admission control and scheduling of
Big Data applications in a highly distributed multi-cloud
environment.

REFERENCES

[1] D. Agrawal, S. Das, and A. E. Abbadi, “Big Data and Cloud Compu-
ting: Current State and Future Opportunities”. In Proceedings of the 14th
International Conference on Extending Database Technology (EDBT/ICDT
'11), Anastasia Ailamaki, Sihem Amer-Yahia, Jignesh Pate, Tore Risch,
Pierre Senellart, and Julia Stoyanovich (Eds.). ACM, 2011, New York,
NY, USA, 530-533.

[2] R. Ranjan, K. Mitra, D. Georgakopoulos, “MediaWise Cloud Content
Orchestrator”, Journal of Internet Services and Applications, Springer,
vol. 4, Jan 2013.

[3] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, S.
Babu, “Starfish: A Self-tuning System for Big Data Analytics”, Pro-
ceedings of the Fifth Biennial Conference on Innovative Data Systems Re-
search (CIDR), January 2011, 261 – 272.

[4] H. Chen, R. H. L. Ciang, and V. C. Storey. “Business intelligence and
analytics: from big data to big impact”. MIS Q. 36, 4 (December 2012),
1165-1188.

[5] W. Raghupathi and V. Raghupathi, “Big data analytics in healthcare:
promise and potential”, Health Information Science and Systems, vol 2:3,
2014.

[6] S.K. Pasalapudi, “Trends in Cloud Computing: Big Data’s New
Home”, January 2014. Available from:
http://www.oracle.com/us/corporate/profit/big-ideas/012314-
spasalapudi-2112687.html

[7] IHTT, “Transforming Health Care through Big Data Strategies for
leveraging big data in the health care industry”; 2013. Available from:
http://ihealthtran.com/wordpress/2013/03/iht%C2%B2-releases-
big-data-research-reportdownload-today/.

[8] Intel, “Big Data in the Cloud: Converging Technologies”, Febuyrary
2013. Available from:

Figure 11: Download/Upload Bandwidth (Kilobytes per Seconds)

Figure 12. CLAMBS Manager memory consumption (bench-

marking scenario)

http://www.intel.com/content/dam/www/public/us/en/docum
ents/product-briefs/big-data-cloud-technologies-brief.pdf

[9] Frost & Sullivan, “Drowning in Big Data? Reducing Information
Technology Complexities and Costs for Healthcare Organizations”
Accessed on: June 2014. Available from:
http://www.emc.com/collateral/analyst-reports/frost-sullivan-
reducing-information-technology-complexities-ar.pdf

[10] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton.
“MAD Skills: New Analysis Practices for Big Data”. PVLDB, 2(2),
2009

[11] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L.
M. Vaquero, K. Nagin, and B. Rochwerger, "Monitoring service
clouds in the future internet," Towards the Future Internet-Emerging
Trends from European Research, pp. 1-12, 2010.

[12] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer, "A Novel Approach
to QoS Monitoring in the Cloud," 2011, pp. 45-51.

[13] E. Magana, A. Astorga, J. Serrat, and R. Valle, "Monitoring of a virtual
infrastructure testbed," in Communications, 2009. LATINCOM'09.
IEEE Latin-American Conference on, 2009, pp. 1-6.

[14] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, "Toward an archi-
tecture for monitoring private clouds," Communications Magazine,
IEEE, vol. 49, pp. 130-137, 2011

[15] M. K. Nair and V. Gopalakrishna, "‚CloudCop: Putting network-
admin on cloud nine towards Cloud Computing for Network Moni-
toring," in Internet Multimedia Services Architecture and Applica-
tions (IMSAA), 2009 IEEE International Conference on, 2009, pp. 1-6.

[16] R. Hillbrecht and L. C. E. d. Bona, "A SNMP-Based Virtual Machines
Management Interface," in Proceedings of the 2012 IEEE/ACM Fifth
International Conference on Utility and Cloud Computing, 2012, pp.
279-286.

[17] Y.-S. Peng and Y.-C. Chen, "SNMP-based monitoring of heterogene-
ous virtual infrastructure in clouds," in Network Operations and
Management Symposium (APNOMS), 2011 13th Asia-Pacific, 2011,
pp. 1-6.

[18] K. Alhamazani, R. Ranjan, F. Rabhi, L. Wang and K. Mitra, "Cloud
monitoring for optimizing the QoS of hosted applications," Cloud
Computing Technology and Science (CloudCom), 2012 IEEE 4th In-
ternational Conference on , vol., no., pp.765,770, 3-6 Dec. 2012.

[19] A. Ganapathi et al., “Statistics-driven Workload Modeling for the
Cloud,” ICDE Workshops 2010, pp. 87-92, IEEE Computer Society.

[20] R. Ranjan; L. Chan; A. Harwood.; S. Karunasekera; R. Buyya., "De-
centralised Resource Discovery Service for Large Scale Federated
Grids," e-Science and Grid Computing, IEEE International Confer-
ence on , vol., no., pp.379,387, 10-13 Dec. 2007.

[21] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, "Dcell: a scala-
ble and fault-tolerant network structure for data centers," in ACM
SIGCOMM Computer Communication Review, 2008, pp. 75-86.

[22] I. Brandic, D. Music, P. Leitner, and S. Dustdar, "Vieslaf framework:
Enabling adaptive and versatile sla-management," Grid Economics
and Business Models, pp. 60-73, 2009.

[23] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, "Toward an
architecture for monitoring private clouds," Communications Maga-
zine, IEEE, vol. 49, pp. 130-137, 2011.

[24] B. Grobauer, T. Walloschek, and E. Stˆcker, "Understanding cloud-
computing vulnerabilities," IEEE Security and Privacy, 2010.

[25] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos, "Shared
Resource Monitoring and Throughput Optimization in Cloud-
Computing Datacenters," 2011, pp. 1024-1033.

[26] K. Alhamazani, R. Ranjan, K. Mitra, P. P. Jayaraman, H. Zhiqian, L.
Wang and F. Rabhi, “CLAMS: Cross-Layer Multi-Cloud Application

Monitoring-as-a-Service Framework,” in Proceedings of the 11th
IEEE International Conference on Services Computing (IEEE SCC
2014). IEEE, 2014.

[27] P. Mell and T. Grance, "The NIST definition of cloud computing
(draft)," NIST special publication, vol. 800, p. 145, 2011.

[28] A. Letaifa, A. Haji, M. Jebalia, and S. Tabbane, "State of the Art and
Research Challenges of new services architecture technologies: Virtu-
alization, SOA and Cloud Computing," International Journal of Grid
and Distributed Computing, vol. 3, 2010.

[29] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, "The characteristics
of cloud computing," in Parallel Processing Workshops (ICPPW),
2010 39th International Conference on, 2010, pp. 275-279.

[30] S. Zhang, S. Zhang, X. Chen, and X. Huo, "Cloud computing research
and development trend," in Future Networks, 2010. ICFN'10. Second
International Conference on, 2010, pp. 93-97.

[31] M. Ahmed, A. S. M. R. Chowdhury, M. Ahmed, and M. M. H. Rafee,
"An Advanced Survey on Cloud Computing and State-of-the-art Re-
search Issues," International Journal of Computer Science Is-
sues(IJCSI), vol. 9, 2012.

[32] L. Atzori, F. Granelli, and A. Pescape, "A network-oriented survey
and open issues in cloud computing," 2011.

[33] A. Turner, A. Fox, J. Payne, and H. S. Kim, "C-mart: Benchmarking
the cloud," Parallel and Distributed Systems, IEEE Transactions on,
vol. 24, pp. 1256-1266, 2013.

[34] V. Vedam and J. Vemulapati, "Demystifying Cloud Benchmarking
Paradigm-An in Depth View," in Computer Software and Applica-
tions Conference (COMPSAC), 2012 IEEE 36th Annual, 2012, pp.
416-421.

[35] B. Sun, B. Hall, H. Wang, D. W. Zhang, and K. Ding, "Benchmarking
Private Cloud Performance with User-Centric Metrics," in Cloud En-
gineering (IC2E), 2014 IEEE International Conference on, 2014, pp.
311-318.

[36] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann, "C-meter: A
framework for performance analysis of computing clouds," in Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2009, pp. 472-477.

[37] A. Li, X. Yang, S. Kandula, and M. Zhang, "CloudCmp: comparing
public cloud providers," in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010, pp. 1-14.

[38] M. A. El-Refaey and M. A. Rizkaa, "CloudGauge: a dynamic cloud
and virtualization benchmarking suite," in Enabling Technologies: In-
frastructures for Collaborative Enterprises (WETICE), 2010 19th
IEEE International Workshop on, 2010, pp. 66-75.

