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Abstract— Cloud computing provides on-demand access to affordable hardware (e.g., multi-core CPUs, GPUs, disks, and 

networking equipment) and software (e.g., databases, application servers and data processing  frameworks) platforms with 

features such as elasticity, pay-per-use, low upfront investment and low time to market. This has led to the proliferation of 

business critical applications that leverage various cloud platforms. Such applications hosted on single/multiple cloud provider 

platforms have diverse characteristics requiring extensive monitoring and benchmarking mechanisms to ensure run-time Quality 

of Service (QoS) (e.g., latency and throughput). This paper proposes, develops and validates CLAMBS—Cross-Layer Multi-

Cloud Application Monitoring and Benchmarking as-a-Service for efficient QoS monitoring and benchmarking of cloud 

applications hosted on multi-clouds environments.  The major highlight of CLAMBS is its capability of monitoring and 

benchmarking individual application components such as databases and web servers, distributed across cloud layers (*-aaS), 

spread among multiple cloud providers. We validate CLAMBS using prototype implementation and extensive experimentation 

and show that CLAMBS efficiently monitors and benchmarks application components on multi-cloud platforms including 

Amazon EC2 and Microsoft Azure.  

          Index Terms— cloud benchmarking, cloud computing; multi-clouds; cross-layer monitoring; QoS; prototyping 
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1 INTRODUCTION

LOUD computing has emerged as a successful com-
puting paradigm and has revolutionized the way 

computing infrastructure is virtualized and used [1]. It 
offers a flexible access to huge pool of virtually infinite 
resources such as processing, storage and network with 
practically no capital investment and modest operating 
costs, proportional to the actual use (pay-as-you use 
model) [2]. The elasticity, pay-as-you-go model and low 
upfront investment offered by clouds, have led to the pro-
liferation of number of application providers. For exam-
ple, popular applications such as Netflix and Spotify use 
clouds such as Amazon EC2 to offer their services to the 
millions of customer’s worldwide.  

The success of cloud computing can be attributed to 
virtualization that enables multiple instances of virtual 
machines (VMs) to run on a single physical machine via 
resource (CPU, storage and network) sharing. Thereby, 
leading to flexibility and elasticity, as new instances can 
be launched and terminated as and when required. Fur-

ther, virtualization also leads to higher security as multi-
ple instances running on a VM runs independently of 
each other [20].  

The cloud platform is logically composed of three lay-
ers. These include: Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). 
For example, applications such as email and games are 
hosted on SaaS layer; applications such as databases and 
web servers are hosted on the PaaS layer; and finally, IaaS 
include resources such as VMs, network and CPU re-
sources.  For the efficient use of cloud resources and to 
meet service level agreements (SLAs), it is imperative that 
applications and components deployed across all these 
layers (*aaS) and possibly distributed across multiple 
clouds are monitored at runtime and are benchmarked 
[26]. In particular, application developers, system design-
ers, engineers and administrators have to be aware of the 
compute, storage, networking resources, application per-
formance and their respective quality of service (QoS) 
across all the cloud layers; as QoS parameters including 
latency and throughput play a critical role in upholding 
the grade of services delivered to the end customers 
based on the agreed upon SLAs. 

In a cloud computing system, the QoS parameter val-
ues are stochastic and can vary significantly based on 
unpredictable user workloads, hardware and software 
failures. Thereby, necessitating the awareness of system’s 
current software and hardware service status such that 
QoS targets of cloud-hosted applications are met [21]. 
Cloud monitoring and benchmarking can assist in the 
holistic monitoring and awareness of applications and 

———————————————— 

• R. Ranjan and P.P. Jayaraman are with the CSIRO Digital Productivity, 
Building 108 North Road, Acton-2601, Australia. E-mail: {rajiv.ranjan, 
prem.jayaraman} @ csiro.au. 

• C. Liu with University of Technology Sydney, Australia. E-mail: 
{chang.liu, Jinjun.chen}uts.edu.au 

• K. Alhamazani and F. Rabhi are with the School of Computer Science and 
Engineering, University of New South Wales. E-mail: {ktal130,Fethir} @ 
cse.unsw.edu.au. 

• K. Mitra is with Luleå University of Technology, Skellefteå Campus, 93187 
Skellefteå, Sweden. E-mail:karan.mitra@ltu.se. 

• D. Georgakopulos is with Royal Melbourne Instituteo of Technology, Mel-
bourne Australia. Email: dimitrios.georgakopoulos@rmit.edu.au 

• L. Wang is with the Chinese Academy of Sciences, Beijing, China. E-mail: 
lizhe.wang@gmail.com. 

C



 

 

components at *aaS layers to meet SLAs [21][23][24][25]. 
Monitoring is required for [26]: (i) QoS management of 
software and hardware resources; (ii) runtime awareness 
of the applications and resources for cloud providers and 
application developers/administrators; and (iii) detecting 
and debugging software and hardware problems affect-
ing applications’ QoS. Additionally, benchmarking can be 
used for: (i) understanding application performance (re-
source and network) before application deployment; (ii) 
facilitating application base lining; and (iii) enabling con-
tinual comparison of applications QoS performance 
against baseline results. Recently, both industry and aca-
demia has focused on cloud monitoring and benchmark-
ing [27-32]. However, most of the approaches are limited 
to one cloud provider and/or one cloud layer 
(IaaS/PaaS/SaaS).  

We assert that in a distributed application hosting en-
vironments such as clouds, there is a need for application 
deployment across multi-cloud providers and multi-
layered environments to benefit from resilience and econ-
omies of scale. This necessitates QoS monitoring and 
benchmarking at multiple cloud service layers. For exam-
ple, the failure of a particular VM (IaaS layer) affects the 
QoS of web application (PaaS layer) or database applica-
tion (PaaS layer) hosted within that VM. This ultimately 
affects the QoS of end-user of that web application offer-
ing (SaaS layer).  This establishes the need for cloud mon-
itoring and benchmarking framework that is capable of 
monitoring applications and components across multiple 
cloud layers and across multiple cloud provider envi-
ronments [36]. Further, benchmarking aids in ensuring 
that the system’s current performance is as good as its 
baseline performance. 

A multi-layer and multi-cloud monitoring and bench-
marking system can enable cloud providers and applica-
tion developers to efficiently manage cloud resources and 
application components by gaining an in-depth under-
standing of the QoS parameter values across cloud layer 
in a multi-cloud setting. The current cloud-application 
monitoring frameworks such as Amazon CloudWatch1 
typically monitor the entire VM as a black box. This 
means that the actual behavior of each application’s com-
ponent is not monitored separately. This renders applica-
tion monitoring with a limited scope where not all com-
ponents distributed across PaaS and IaaS layers are moni-
tored and benchmarked holistically. This limiting factor 
reduces the ability for fine-grained application monitor-
ing and QoS control across layers.  Further, current cloud 
monitoring frameworks are mostly incompatible across 
multiple cloud providers. For example, Amazon Cloud-
Watch does not allow monitoring application components 
hosted on non-AWS platforms. This defeats the distribut-
ed nature of cloud application hosting. These drawbacks 
trigger the significance of having interoperable and multi-
layer enabled monitoring techniques and frameworks. 
Finally, current approaches lack the ability to benchmark 
application performance deployed different layers allow-
ing the service provider to establish baseline performance 

 

1 http://aws.amazon.com/cloudwatch/ 

estimates. 
Contribution: The key contribution of this paper is to 

address an important challenge of cross-layer cloud 
monitoring and benchmarking in multi-cloud environ-
ments. In particular, we propose, develop and validate 
Cross-Layer Multi-Cloud Application Monitoring- and 
Benchmarking-as-a-Service Framework (CLAMBS). 
CLAMBS offer the following novel features: 

• It provides the ability to monitor and profile QoS 
of applications, whose parts or components are 
distributed across heterogeneous public or private 
clouds; 

• It provides visibility into QoS of individual com-
ponents on an application stack (e.g., web server, 
database server). In particular, CLAMBS facilitate 
efficient collection and sharing of QoS information 
across cloud layers using a cloud provider agnos-
tic agent-based technique; 

• It provides benchmarking-as-a-service that enables 
the establishment of baseline performance of ap-
plication deployed across multiple layers using a 
cloud-provider agnostic technique; and 

• It is a comprehensive framework allowing contin-
uous benchmarking and monitoring of multi-
cloud, multi-layer hosted applications. 

The rest of the paper is organized as follows. Section 2 
presents summary of current techniques and frameworks 
that support cloud monitoring. Section 3 presents the 
CLAMBS system framework for cloud applications moni-
toring and benchmarking. Section 4 presents CLAMBS 
deployment models in multi-cloud environments. Section 
5 presents the prototype implementation details. Section 6 
presents empirical evaluation results of CLAMBS frame-
work. Finally, section 7 concludes the paper. 

2 RELATED WORK 

In [11], Lattice monitoring framework is presented for 
monitoring virtual and physical resources. In this paper, a 
managed service is specified as a collection of Virtual Ex-
ecution Environment (VEEs). Hence, Lattice is imple-
mented to be able to collect information for CPU usage, 
memory usage, and network usage of each VEE and VEE 
host. Moreover, a dependable monitoring facility is pre-
sented in [12], called Quality of Service MONitoring as a 
Service (QoS-MONaaS). The focus of QoS-MONaaS ap-
proach is to: (i) continuously monitor the QoS statistics at 
the Business Process Level (SaaS); and (ii) enable trusted 
communication between monitoring entities (cloud pro-
vider, application administrator, etc.). Furthermore, a 
monitoring framework known as (PCMONS) is devel-
oped by incorporating previous frameworks and tech-
niques [14]. PCMONS proves that cloud computing is 
viable way of optimizing existing computing resources in 
data centers. Also, the paper notes that orchestrating 
monitoring solutions on installed infrastructures is viable. 
In contrast to above frameworks, CLAMBS focuses on 
monitoring and benchmarking applications components 
across cloud layers as well as across heterogeneous cloud 
platforms. Moreover, current cloud monitoring solutions 



 

 

lacks an integrated approach to benchmarking. For ex-
ample, cloud harmony2 makes available a benchmarking 
performance data of their infrastructure but does not al-
low end-users to benchmark application components. In 
[34], authors broadly classify the four areas of bench-
marking application in cloud environments as CPU, 
Memory I/O, Disk I/O, and Network I/O. The proposed 
CLAMBS framework is driven by these principles of 
monitoring resources at application component layer 
cloud layers in multi-cloud environment.  

In cloud platforms, recent efforts have been put into 
improving VMs monitoring and controlling. A number of 
frameworks have been proposed for VM management, 
which employ Simple Network Management Protocol 
(SNMP). SBLOMARS [13] implements several sub-agents 
called ResourceSubAgents for remote monitoring. Each of 
SBLOMARS’s sub-agents is responsible for monitoring a 
particular resource. Inside each of these sub-agents, 
SNMP is implemented for management data retrieval. In 
contrast to CLAMBS which is focused on monitoring and 
benchmarking applications QoS in virtualized cloud 
computing environments, SBLOMAR focuses on enabling 
multi-constrain resource scheduling in grid computing 
environments.  

In [15], CloudCop is a conceptual network monitoring 
framework implemented using SNMP. Basically, Cloud-
Cop adopts Service Oriented Enterprise (SOE) model. 
CloudCop framework consists of three components: 
Backend Network Monitoring Application, Agent with 
Web Service Clients, and Web Service Oriented Enter-
prise. While CloudCop focuses on network QoS monitor-
ing, CLAMBS is concerned with application QoS monitor-
ing. In [16], the authors propose a Management Infor-
mation Base (MIB) called Virtual-Machines-MIB, to define 
a standard interface for controlling and managing VM 
lifecycle. It presents SNMP agents, which are developed 
based on NET-SNMP public domain’s agent. Besides 
read-only objects, Virtual-Machines-MIB provides read-
write objects that enable controlling managed instances. 
To obtain the data of Virtual-Machines-MIB, mostly Lib-
virt API and other resources such as VMM API are used 
[16]. While Virtual-Machines-MIB is concerned with mon-
itoring IaaS-level (VM) QoS statistics, it does not cater for 
the QoS statistics of PaaS level application components.  

In [17], the authors stress the importance to have a 
standardized interface for monitoring VMs on multiple 
virtualization platforms and this interface should be 
based on SNMP. The paper presents a framework for 
VMs monitoring which is fundamentally based on SNMP. 
The proposed work was built over three different VM 
hypervisors namely, VMware, Xen, and KVM. These 
three hypervisor were installed on two different OSs, 
which are MS Windows and Linux. Similarly to Virtual-
Machines-MIB, this framework utilizes Libvirt API. 
Moreover, it implements an agent extension AgentX us-
ing Java. Primarily, this AgentX is to obtain VMs man-
agement data for the VMware, Xen, and KVM VMs and 
eventually the data is presented via web-based manage-

 

2 https://cloudharmony.com/services 

ment. However, similar to [16], the approach given in [17] 
focuses on VM-level QoS monitoring, while completely 
ignoring application component level QoS management 
and monitoring. In addition to the mentioned works 
above, libvirit-snmp is a subproject, which primarily pro-
vides SNMP functionality for libvirt. Libvirt-snmp allows 
monitoring virtual domains as well as it allows setting 
domain’s attributes. Furthermore, Libvirt-snmp provides 
a simple table containing monitored data about domains’ 
names, state, number of CPUs, RAM, RAM limit CPU 
time. 

In cloud environments, traditional benchmarking ap-
proaches cannot serve the users’ needs [35]. Besides 
runtime performance, cloud specific attributes such as 
elasticity, deployment, resiliency, and recovery are re-
quired to be reflected in benchmarking process [35]. Fur-
ther, benchmarking applications distributed in multi-
cloud environments is a complex task as each application 
requires evaluation of distinct QoS metrics from others in 
order to evaluate the targeted cloud performance. Moreo-
ver, each application has its own workload requirements 
for each individual component rendering the need for a 
general-purpose benchmark framework.  A specific pur-
pose-built benchmarking component will not be able to 
serve cloud users having variety of use cases in cloud 
environment. 

Authors in [33], put a notable effort on the design and 
the simplicity of using C-MART, which is, a web applica-
tion benchmarking tool. C-MART presents a significant 
tool emulating, and then benchmarking web applications 
such as online store or social networking website. Origi-
nally, C-MART is motivated by the fact that benchmarks 
need to cope up with the shift from the traditional envi-
ronments to cloud environments. However, C-MART is 
limited to benchmarking web application at the PaaS lay-
er. 

Amazon EC2 compatible C-Meter was the original pro-
totype of the EC2 current extensible cloud benchmark 
framework [36]. It employs low level metrics that are typ-
ically not visible to general cloud users. Therefore, C-
Meter is unsuitable to evaluate higher levels of cloud ser-
vices (e.g. PaaS and SaaS) [36]. Despite of metrics Cloud-
Cmp [37] can measure, authors in [35] stated that some of 
the metrics provided by CloudCmp are too experimental 
to be meaningful to cloud user, e.g. time to consistency. 
CloudGauge [38], presents an effective dynamic virtual 
machine benchmarking tool. It provides automated 
scripts to provision and measure the performance of the 
virtual environment setup. But, the focus of CloudGauge 
experimental benchmark was on the virtualization layer. 
Furthermore, the data collected were mainly CPU usage 
and average load Memory.  

To guarantee the SLA and to avoid failure, the chal-
lenge is to identify which component of the application 
needs to be re-configured or what type of auto-scaling is 
required, To this end, we need a better understanding of 
individual component’s performance accurately to help 
cloud orchestrator to effectively scale the corresponding 
layer at the appropriate time. The proposed CLAMBS 
model benchmarking and real-time monitoring as-a-



 

 

service system is a practical method to understand and 
evaluate how application components distributed across 
cloud layers in multi-cloud environments can essentially 
perform and handle their tasks.  

3 CLAMBS: CROSS-LAYER MULTI-CLOUD 

APPLICATION MONITORING AS A SERVICE 

Overview 

Fig. 1 presents an overview of the proposed CLAMBS 
framework. As depicted in the figure, CLAMBS employs 
an agent based approach for cross-layer, multi-cloud re-
source/application monitoring and benchmarking. In this 
multi-cloud approach, monitoring and benchmarking 
agents are deployed across various cloud provider envi-
ronments based on application requirements and de-
ployments.  
 
A CLAMBS agent is responsible for monitoring and 
benchmarking application QoS parameters such as re-
source consumption, network performance, storage per-
formance etc at various layers including SaaS, PaaS and 
IaaS. On the other hand, CLAMBS manager is responsible 
for orchestrating and collecting QoS data from each moni-
toring and benchmarking agent. 

CLAMBS Model 

CLAMBS include mechanisms for efficient cloud monitor-
ing and benchmarking applications deployed at *aaS lay-
ers. CLAMBS provides standard interfaces and communi-
cation protocols that enable application/system adminis-
trator to gain awareness (benchmark and monitor against 
benchmarking outcomes) of the whole application stack 
across different cloud layers in heterogeneous, hybrid 
environments (different resources constraints and operat-
ing systems). The CLAMBS approach also addresses the 
challenges in interoperability among heterogeneous cloud 
providers. Fig. 2 presents a detailed architecture of the 
proposed CLAMBS framework. The CLAMBS framework 

comprises three main components namely, Manager, 
Monitoring Agent and Benchmarking Agent. 

A. Manager 

The CLAMBS Manager is a software component that 
performs two operations:  1) it collects QoS information 
from Monitoring Agents; and 2) it collects benchmarking 
information from benchmarking agents running on sev-
eral virtual machines (VMs) across multi-cloud providers 
and environments. In case of monitoring, the manager 
collects QoS parameter values from the monitoring agents 
running at the *aaS layers. The communication between 
the manager and the agents can employ a push or pull 
technique. In case of pull technique, the manager polls the 
CLAMBS monitoring agents at different frequency to col-
lect and store the QoS statistics in a local database (DB).  

When a push strategy is employed, the agents obtain 
the relevant QoS statistics and push the data to the Moni-
toring manager based on a predetermined frequency. As 
soon as the monitoring system is initialized in the 
cloud(s), the VMs running the CLAMBS manager(s) and 
the monitoring agents boot up. Using discovery mecha-
nisms such as broadcasting, selective broadcasting or de-
centralized discovery mechanisms [20], the agents and 
manager discover each other. After discovering the ad-
dress of each agent and manager, depending on the avail-
able strategy (push/pull), QoS statistics is collected by the 
manager from the agents.  

To illustrate further, consider a web multimedia appli-
cation service hosted on multiple cloud providers for ex-
ample in US Virginia, and AU Sydney. The users can 
search the multimedia content and can retrieve the de-
sired content via the web application. Such a web multi-
media application comprises the media storage for con-
tent distribution at the IaaS layer, a database server for 
media search and indexing at PaaS and a web interface at 
the SaaS layer. The media and the database servers are 
hosted at the PaaS layer, whereas, the media content is 
stored at the storage server at IaaS layer. Each component 

Figure 1: Overview of CLAMBS Model 



 

 

of the web application is running and hosted on different 
VMs. Media server has an IP address say, 192.168.1.1, 
indexing server has an IP address 192.168.1.2, and the 
storage server has IP 192.168.1.3. Each VM also runs 
CLAMBS monitoring agents that monitor applications 
and VM parameters (e.g. CPU, Storage and Memory). In 
this case, the manager can send first request to the agent 
on the media server VM specifying the IP address 
192.168.1.1:8000 and stating the QoS target e.g., CPU utili-
zation. Similarly, a second request is sent to the agent on 
the indexing server VM specifying the IP address 
(192.168.1.2:8000) and stating the QoS target e.g., Packets 
In. In the same way, a third request is sent to the agent on 
the storage server VM specifying the IP address 
(192.168.1.3:8000) and stating the QoS target e.g. actual 
used memory.  

The CLAMBS manager employs a QoS data collection 
schema to store QoS statistics collected from monitoring 
agents into the local database and an agent schema to 
maintain the list of discovered agents. The second opera-
tion is performed by the CLAMBS Manager to facilitate 
benchmarking of applications distributed across *aaS lay-
ers in multi-cloud environments. The manager’s bench-
marking function is a software component that collects 
network and application performance QoS information 
from CLAMBS benchmarking agents that are distributed 
and running on several VMs hosted across multi-cloud 
environments in different data centers. In particular, the 
manager collects the traffic QoS values from agents host-
ed on VMs that are distributed across different data cen-
ters.  

The benchmarking component of the manager is re-
sponsible for firing VMs at remote data centers to per-
form application level benchmarking based on user re-
quirements that include data center locations.  For exam-
ple, consider a scenario where an end user located in Sin-
gapore, requests multimedia content from the web mul-

timedia application service. Typically, such application 
components could be distributed across multiple datacen-
ters. The CLAMBS framework supported by the manager 
is able to dynamically fire a VM hosting the benchmark-
ing agent at the end user location, Singapore. Then the 
CLAMBS manager can repeatedly test and benchmark the 
performance of the web application at both the locations 
(US Virginia, and AU Sydney) to select the best location 
to serve the multimedia content to the end user. This ap-
proach serves the following two main purposes: 1) it al-
low users who use third-party cloud hosting services to 
benchmark application performance for later comparison 
and evaluation; and 2) it allow users to test the system’s 
performance automatically and choose the best perform-
ing data center for service delivery. The key advantage of 
CLAMBS here is the ability to dynamically run bench-
marking of application at *aaS layers of multiple clouds 
automatically with very little configuration required from 
the user.  The CLAMBS manager also incorporates an API 
that is used by other monitoring manager or external ser-
vice to share the QoS statistics. 

B. CLAMBS Monitoring Agent 

Another major component of the CLAMBS framework is 
the monitoring agent. The monitoring agent resides in the 
VM running the application and collects and sends QoS 
values as requested by the manager. After the monitoring 
system initialization, the agent waits for the incoming 
requests from the manager or starts to push QoS data to 
the manager. Upon arrival of the request, the agent re-
trieves the stated QoS values belonging to a given appli-
cation process and/or a system resource and sends them 
back as a response to the manager. 

The monitoring agent has the capability to work in 
multi-cloud heterogeneous environments. Agent manager 
communication can be established using any approach 
that fits the application requirement e.g., publish- sub-

Figure 2: CLAMBS Framework Architecture 



 

 

scribe, client- server or web services.  It can also employ 
standardized protocols for communicating system man-
agement information like SNMP. The proposed blueprint 
does not restrict future developers from extending 
CLAMBS to their purposes. In our proof-of-concept im-
plementation explained later, we demonstrate the imple-
mentation of the CLAMBS framework using a combina-
tion of SNMP and RESTful Web services. The CLAMBS 
monitoring agent also uses operating system dependent 
code to fetch corresponding application QoS statistics, for 
example, use of OS specific commands to get CPU usage 
in Linux and Windows systems respectively. 

C. CLAMBS Benchmarking Agent 

The third component of the CLAMBS framework is the 
benchmarking agent. This agent has the capability to mi-
grate from the manager VM to a VM that either hosts the 
application/service or act as a client to the service. The 
benchmarking agent incorporates standard functions to 
measure the network performance between the data cen-
ter(s) hosting the application service and the client. The 
benchmarking agent also incorporates a load-generating 
component that generates traffic to benchmark the appli-
cation based on a workload model. The load generator 
part of the benchmarking agent is able to generate load on 
applications such as DBMS and Web Servers. For exam-
ple, generating requests to a web server (N users and M 

requests/second) based on a website workload model 
(e.g. football world cup trace - 
http://ita.ee.lbl.gov/html/contrib/WorldCup.html). The 
benchmarking agent has the capability to work in multi-
cloud heterogeneous environments. 
In essence, objectives that require benchmarking process 
are: i) determining where and what type of performance 
improvements are needed, ii) analyzing the available 
metrics of performance, iii) using benchmarking infor-
mation order to improve the services performance, and 
iv) comparing the benchmarking information with the 
standard measurements. Thus, to benchmark cloud appli-
cations (e.g. web application), providers can apply a 
workload on such application’s distributed components. 
Compared to the state-of-the-art research, CLAMBS 
benchmarking functionality is an additional dimension 
alongside monitoring. This means that CLAMBS is one of 
a kind unified framework incorporating monitoring and 
benchmarking as-a-service capabilities based on distrib-
uted agents across multi-cloud platforms. 

4 MODELING AND ANALYZING CLAMBS 

OVERHEADS IN MULTI-CLOUD ENVIRONMENTS 

As mentioned previously, the CLAMBS monitoring 
framework is aimed to be agnostic of the underlying 
cloud platform i.e., the manager/agent may run on heter-
ogeneous cloud platforms. In case the monitored frame-
work is distributed across different cloud platforms e.g., 
Amazon cloud platform and Windows Azure platform, 
then one manager and multiple agents will be residing on 
each of these cloud platforms. Hence, it is important to 
model the overheads introduced by the distribution of 
CLAMBS in multi cloud environments. 

Communication Overhead 

The communication overhead depends on the physical 
locations of managers i.e., data center where CLAMBS 
Agents are distributed across different data centers. We 
have n data centers��, ��, … , ��.  For a data center D� , 
there are m� VMs running:  
�,�, … , 
�,�.  As each VM is 
accompanied by a CLAMBS agent, we denote the agents 
as ∀�= ∀�,�, … , ∀�,� . The size of one CLAMBS Agent mes-
sage from ∀�,� is ��,�. Location and deployment of 
CLAMBS agents and managers will vary. When there is 
one CLAMBS manager � located on data center ��,	� ∈�1, �� (See Fig.3.1): each of the agent ∀�,� VM has to com-
municate with the manager independently; thus, total 
communication overhead from CLAMBS agents to 
CLAMBS manager in one report will be as following: 
 ∑ ��∑ ��,�� � − ��,� � , ! = 1,… , �; 	# = 1,… ,$� 														(1) 

If the message size is a fixed value M then CLAMBS 
messages communication overhead is  M ⋅ �'∑ m�� ( − m)�, i = 1,… , n	'2(	

In the above formulas, messages of agents located in π 
are excluded being in the same data center where 
CLAMBS Manager is running. Furthermore, for optimiza-
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Figure 3.2: Communications: 3 data centre, manager � located 
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tion, these messages may not be needed for every report. 
This will take place when CLAMBS agent process data 
analysis before sending data. Therefore, when changes 
occur to data then they will be reported to CLAMBS 
manager. Thus, If only a subset S� of ∀� is reporting each 
time, CLAMBS communication cost will be reduced 
greatly. 

Let Π� be the bandwidth (connection speed) for data 
center D�. The total time consumption in communication 
(when all CLAMBS messages are sent simultaneously at 
fixed time slots) is:  MAX� �MAX��6� ∙ ��,��                 (3) 

 MAX� �MAX����,�/6�� 																		 (4) 
 

Therefore it is possible to develop adaptive algorithms to 
reduce reports from agents ∀�,9 with large Π� ∙ M�,9 to save 
time, at the cost of CLAMBS messages info. As they are 
all variable, the criteria could be an average from history. 
This is a possible way to decide S� for every agent report. 

When there are n distributed CLAMBS managers/sub-
managers located across different data centers (See Fig. 
3.2), the cost is significantly reduced. Ideally, n managers ��, ��, … , �� are located in different data centers. Although 
management task is distributed, a super manager is still 
needed for maintaining a centralized database. Let's say 
the super manager is �� ∈ :��, ��, … , ��;. In this case, if the 
message size from ��  is �� , then the total communication 
overhead for each round is reduced to ∑ ��� . However, 
the optimization in communication overhead also brings 
other trade-offs or compromises such as in setting up and 
switching additional managers, CPU load, response time, 
etc. We now discuss further in the following section. 

CPU, Response and Search Time 

The distributed CPU load will be determined by the lay-
out of agents. We will also compare the standard one-
manager layout (model (1), see Fig.4.1) against the hierar-
chical tree-typed manage structure (model (2 & 3), see 
Fig.4.2, 4.3). The total number of agents is N and the max 
number of child nodes per node is n. The CPU load for 
managing one CLAMBS message is C. If there are a total 
of l levels of the tree control structure, then: < ≥ >log�'B ∙ '� − 1( + 1(D															 (5) 
the inequality turns into an equality when the tree is a 
complete tree in its top < − 1 levels. In model (1) (Fig 6.1), 
CPU load for the super manager per round is 'B − 1( ∙ E 
and other nodes is 0. In model (2) (Fig 6.2), max CPU load 

for super manager will be ∙ E , and at least >'B − 1(/�D 
other managers will also take over a maximum CPU load 
of  � ∙ E each. Whatever the load distribution, as the same 
total number of agents are returning the same amount of 
CLAMBS data, the overall CPU load will remain the 
same. In other words, a larger n will incur less managers 
to participate and increase the load for each manager. 
Smaller n will improve the distribution, but l will also 
increase so that the response time will grow.  

The response time will be determined by the time for a 
node used to reach super manager for it to react on unu-
sual behaviors. If the time for a node (agent) ∀ to contact 
its manager is t (including processing and communica-
tion), then in (1) all response time is t. In (2), the response 
time will grow for most nodes. The response time for 
node ∀  will be <∀ ⋅ F where <∀ is the level of ∀. Under this 
model, it's easy to observe that a larger n will cause less 
number of higher-response-time nodes, therefore smaller 
total response time. As the response time for most indi-
vidual nodes will grow, the total response time for all N 
nodes will also grow. Instead of 'B − 1(F, the total time FGHGIJ satisfies: 

tGHGIJ ≥ t ∙ �∑ i ⋅ n�JL��M� + 'l − 1( ⋅ �N − ∑ n9JL�9MO � 	
= t ∙ P'l − 2(nJ − 'l − 1(nJL� + n'n − 1(� + 'l − 1(

⋅ QN − nJL� − 1n − 1 RS		
 

= t ∙ P'l − 1( ∙ N − nJ − ln + l − 1'n − 1(� S	'6( 
Therefore, the average response time tIUV for N − 1 

nodes other than the super manager satisfies 

tIUV ≥ G
WL� ∙ Q'l − 1( ∙ N − XYLJXZJL�

'XL�(1 R	'7(	
As before, the inequalities turn into equalities if and 

only if the tree is a complete tree in the top l − 1 levels. 
We can see that given a fixed N, when n decreases or l 
increases, the average response time will grow. Note that 
here t is considered a constant value. In practice, commu-
nication overhead will also affect response time of each 
node. Therefore, minimizing inter-data center communi-
cations as shown in communication overhead analysis 

...... 

(1)                                        (2)                                                                                 (3) 

Figure 4. Different management structures for 17 agents 



 

 

will also help in a lowering response time. 
Another metric is the average search time. Similar to a 

search tree, the (minimum) average search time for the 
super manager to find a leaf node in (2) is log�B (for a 
complete tree), as opposed to ''B − 1(/2( ∙ F in (1). There-
fore, the search time will also benefit from a larger n. 

To sum up, we can see that the two deployments of 
agents have their own advantages and disadvantages. To 
achieve deserved performance, the system setup will de-
pend on the actual requests and different metrics such as 
communication overhead, CPU load distribution, average 
response time analyzed in this section.  

5 CLAMBS: SYSTEM IMPLEMENTATION 

The proof-of-concept implementation of the proposed 
CLAMBS framework has been developed using Java and 
is completely cross-platform interoperable i.e., it works 
on both Windows and/or Linux operating systems. 

Monitoring Agent Implementation: The process of re-
trieving QoS targets is done by utilizing functionalities 
provided by SNMP, SIGAR, HTTP and other custom built 
APIs. For instance, SNMP is used to retrieve the QoS val-
ues related to networking, number of packets in and out, 
route information and number of network interfaces. SI-
GAR is used to obtain access to low-level system infor-
mation such as CPU usage, actual used memory, actual 
free memory, total memory and process specific infor-
mation (e.g. CPU and memory consumed by a process). 
Moreover, network information such as routing tables can 
also be obtained using SIGAR. Both SIGAR and SNMP 
packages have their own operating system specific im-
plementations to retrieve system information e.g. system 
resources, and user processes. To enable SNMP monitor-
ing, we define new SNMP Objects Identifiers (OIDs) in a 
sequence. For example function to get the CPU usage of a 
specific process (tomcat) is assigned an OID 
.1.3.6.1.9.1.1.0.0. Similarly, function to get process 
memory is assigned an OID .1.3.6.1.9.1.1.0.1. The 
CLAMBS implementation also incorporates a HTTP 
based Restlet communication standard. This allows great-
er flexibility to monitor application that does not support 
the network specific SNMP protocol. 

Manager Implementation: The manager uses a MySQL 
database to store the QoS statistics collected from the 
monitoring and benchmarking agents. For the proof-of-
concept implementation, we used a pull approach where 
the Manager is responsible to poll for QoS data from 
agents distributed across multiple cloud provider VMs. 
The manager uses a simple broadcasting mechanism for 
agent discovery. On booting, a discovery message is 
broadcasted to the known networks. Agents that are 
available respond to the manager’s request. The manager 
then records agent information to the agent database. The 
manager then starts off threads to query each agent in the 
agent database to obtain QoS parameters. The polling 
interval is a pre-defined constant and can be changed us-
ing the manager configuration files. Utilizing Java func-
tionalities, the manager is implemented based on the net 
package which is provided by Java libraries. This library 

is responsible of most network communication functions 
and requirements. It provides the superclass URLConnec-
tion which represents a communication link between ap-
plications and Uniform Resource Locator (URL). There-
fore, each manager’s request will have two main compo-
nents which are protocol identifier and resource name. 
The benchmarking component of the manager can meas-
ure the QoS parameters including Network Latency, 
Network Bandwidth, Network download speed, and 
Network upload speed. We have also incorporated REST-
ful-based API’s allowing external services/applications to 
query monitoring and benchmarking data. 

Benchmarking Agent Implementation: Benchmarking 
agents are bootstrapped with the VMs and distributed 
across different cloud platforms e.g. Amazon and Azure. 
On booting VMs, agents start up and wait for incoming 
requests from the manager to start benchmarking. Typi-
cally, there is a unique IP address for each agent repre-
senting the VM location. The port used for communica-
tion by the benchmarking agents is 80 as the protocol 
identifier in our implementation for communication is 
HTTP. The server component we integrate to run the 
agents is Apache Tomcat. Upon requests by the manager, 
the agent starts its role which includes download/upload 
objects from remote server. Essentially, the agent is capa-
ble of handling requests from more than one sub-manger 
in case of hierarchal architecture are adopted where sub-
manager and one super manager are in use.  The bench-
marking agent also incorporates the load generator. This 
component of CLAMBS is essentially implemented using 
the JMeter package developed in Java. In this implemen-
tation we designed our prototype to generate web appli-
cation server traffic using HTTP requests. The system also 
supports SQL load generation. In case of HTTP workload, 
HTTP sampler is provided along with the domain, port 
number, path, and the request method (e.g. POST or 
GET). Similarly, in case of the  SQL workload, SQL sam-
pler, query, query type (insert, update, or select), data-
base URL, and database driver are provided. Loop con-
troller is specified according to the aimed workload sce-
nario. This also applies to the thread group and the num-
ber of threads that will perform the intended workload. 
Seamlessly, CLAMBS load generator prototype is imple-
mented to be able to reach the targeted components 
across different cloud platforms.        

Agent Manager Communication: For the proof-of-concept 
implementation, the communication between the agent 
and the manager has been implemented using two tech-
niques namely RESTful Web services and SNMP. Having 
a RESTful approach enables easy lightweight communica-
tion between CLAMBS agents and manager/super man-
ager. Using a standardized SNMP interface makes 
CLAMBS completely compatible with existing SNMP-
based applications, tools and systems and reduces the 
effort involved in collecting QoS statistics. 

6 CLAMBS: EXPERIMENTS AND RESULTS 

Hardware and Software Configuration 

To evaluate the CLAMBS framework, experiments were 



 

 

conducted on Amazon AWS and Microsoft Azure plat-
forms. We used standard small instances on each plat-
form. The AWS instance has the following configurations: 
619 MB main memory, 1 EC compute unit e.g., 1 virtual 
core with 1 EC2 compute unit, 160 GB of local instance 
storage, and a 64-bit platform. The Azure instance has the 
following configurations: 768 MB main memory, 1GHz 
CPU (Shared virtual core) and a 64 bit platform. Three 
different data centers are considered in this experiment, 
namely, Sydney, US-Virginia, and Singapore. CLAMBS 
Manager was located in Sydney. One CLAMBS agent was 
hosted on a VM at US-Virginia data center and another 
CLAMBS agent is hosted on a VM in Singapore data cen-
ter. VM’s in the experiments were running Microsoft 
Windows Operating System. For persistent storage of 
CLAMBS agent and manager data, we used off storage 
volumes such as Elastic Block Store (EBS) in Amazon EC2 
and XDrive in Windows Azure. Major advantages of ar-
chitecting applications to adopt off instance storage are: i) 
each storage volume is automatically replicated, and this 
prevents data loss in case of failure of any single hard-
ware component; and ii) storage volumes offer the ability 
to create point in time snapshots, which could be persist-
ed to the cloud specific data repositories. 

Experimental Setup 

As discussed previously, the CLAMBS system has three 
main components namely the Manager, Monitoring agent 
and Benchmarking agent. In this section, we present the 
experimental scenario and setup of the monitoring and 
benchmarking agents. In both cases, the manager is re-
sponsible to collect monitored and benchmarked QoS 
parameters. 

To evaluate and validate CLAMBS system, we consid-
er a web multimedia application that uses a content dis-
tribution network to distribute multimedia content to 
end-users using a multi-cloud provider setup (e.g. com-
bination of Amazon AWS and Windows Azure). We em-
ploy CLAMBS approach to benchmark and monitor the 
performance of the web multimedia application compo-
nents namely the search and indexing server (Tomcat 
web server and MySQL database) and network QoS pa-
rameters including network latency and download and 
upload performance. 

Monitoring Agent Setup: Each monitoring agent com-
prises the corresponding SNMP and SIGAR package de-
pendencies to accomplish the monitoring task.  In the 
experiment, the monitoring manager triggered a request 
to monitoring agents, which in turn retrieved the request-
ed QoS parameters from the hosted VM. Each agents 
running on the VM listened on a unique port e.g. VM1-
IP:8000, VM1-IP:8001, enabling them to respond to que-
ries from the monitoring manager independently. The 
agents sent responses to the monitoring manager concur-
rently. For experimental purposes and to demonstrate 
and validate CLAMBS cross-layer monitoring capability, 
each agent monitored several resources including system 
resources and user processes  

Table 1 presents the list of monitored process-
es/resources. On retrieving QoS data from the agents, the 

monitoring manager saved the data into the local data-
base by classifying them as system performance or user 
applications QoS performance parameters. 

Table 1: Monitoring across different layers 

Process/Resource Description Owner 

Tomcat7w.exe Apache Tomcat 7 User 

MySqld.exe MySQL Workbench 6.0 User 

Javaw.exe Monitoring Manager User 

Lsass.exe Local Security Authori-

ty Process 

System 

Winlogon.exe Windows Logon App. System 

Services.exe Services and Controller 

App. 

System 

VM CPU Usage CPU usage of the entire 

VM 

System 

VM Memory Usage Memory usage of the 

entire VM 

System 

 
Benchmarking Agent Setup: The benchmarking agent is 

composed of two components which are network traffic 
benchmarking and CLAMBS load generator. Each agent 
comprises the corresponding required Java packages de-
pendencies to accomplish the benchmarking task. In this 
experiment setup, we test the network QoS parameters 
that links the CLAMBS manager and the benchmarking 
agents. Benchmarking the network link connecting an 
agent and the CLAMBS manager was accomplished by 
generating bi-directional traffic to simulate download and 
upload processes. We ran this experiment to demonstrate 
CLAMBS ability to benchmark network performance be-
tween two different locations of data centers.  

In our experiments, the CLAMBS manager triggered 
the benchmarking requests to CLAMBS benchmarking 
agents, which responded immediately to the manager’s 
request. Communications between CLAMBS manager 
and agents were conducted using the RESTful HTTP pro-
tocol. Pre-defined files with varying sizes (50 MB, 100MB, 
and 200MB) were used during the experiment to measure 
network performance over a download/upload process-
es. Table 2 lists the measurements parameters that were 
observed throughout the experiment.  According to our 
conceptual framework, such measurements provide the 
user with the ability to decide and choose a preference of 
what site/location a service is performing better. Like-
wise, a service provider will certainly acquire such 
knowledge in order to improve the delivered service 
quality to clients. 

 
Runtime Configuration Monitoring Agent: Monitoring 

agents as well as manager are packaged into jar files with 
corresponding dependencies and configured to run dur-
ing VM boot process. The agents use a configuration file 
that specifies processes to monitor. Based on this infor-
mation, at run-time, the agent determines the process id 
of the respective process. After finding the process id, the 
agent starts to retrieve specific QoS parameters for that 
process e.g. memory usage and CPU consumption. 

 
 



 

 

                 Table 2: Benchmarking Measurements 

Traffic Benchmarking 
Measurement Parameter 

Description 

Download File Network 

Latency Time 

Time consumed starting 

from a request up-till down-

load complete including 

Network Latency 

Upload Network Bandwidth Amount of data transferred 

per Second while download 

process 

Upload File Network Laten-

cy Time 

Time consumed starting 

from a request up-till upload 

complete including Network 

Latency 

Upload Network Bandwidth Amount of data transferred 

per Second while upload 

process 

 
Fig. 5 provides a detailed workflow of communication 

between the monitoring manager and agent. The moni-
toring manager instantiated parallel threads for each 
group of Agents in one VM i.e., each thread was dedicat-
ed to only one VM to communicate with Agents running 
on that VM. Manager thread sent requests to agents ad-
dressed by IP address and port number. The request was 
for a list of QoS parameters monitored by the agent. After 
receiving the request, agents compute the QoS parameter 
values from the hosting VM. The agents then respond to 
the manager with corresponding QoS parameters.  

To evaluate the proposed CLAMBS framework, we 
deployed the agents and managers on four virtual ma-
chine instances (3 VM’s on AWS and 1 on Microsoft Az-
ure). On VM’s that hosted the agent, depending on num-
ber of agents, the agents were bound to unique ports. E.g., 
if VM-3 hosted 30 Agents, it was bound to ports 8000-
8030. Similarly if VM-4 hosted 10 agents, it was bound to 
ports 8000-8010. 

Runtime Configuration Benchmarking Agent: CLAMBS 
manager and agents are packaged into runnable jar and 
war files with corresponding dependencies and config-
ured to run during VM boot process. The agents use a 
configuration file that is required to run and remain 
standby waiting for the manager requests. Intervals of 
requests can vary but initially is set to 10 seconds for each 
request sent to a single CLAMBS agent. Agents in turn 
take immediate response towards CLAMBS manager re-
quest. Definite data with pre-chosen sizes are stored local-
ly in each VM hosting CLAMBS manager and CLAMBS 
agents to be utilized for data transferred during the ex-
periment. Fig. 6 provides a detailed workflow of commu-
nication between the CLAMBS manager and agents in 
different data centers. The manager instantiated parallel 
threads for each agent addressed by IP address and the 
port number . Concurrently, CLAMBS manager send sim-
ilar requests to other registered agents in different data 
centers which can also be in a different cloud platform. 
 

Experimental Results and Discussion 

CLAMBS Monitoring Agent 

To validate that the CLAMBS monitoring agent does not 
introduce significant overheads while monitoring QoS 
parameters across layers in multi-cloud environments, we 
ran experiments in 4 typical multi-cloud workload sce-
narios. 
Scenario I: VM-1 hosts the Manager, VM-2 hosts 25 

Agents, VM-3 hosts 30 Agents, and VM-4 hosts 30 
Agents. In total, the manager communicates with 85 
Agents deployed in multi-cloud environment (3 AWS 
instances and 1 Azure instance).  
Scenario II: VM-1 hosts the manager, VM-2 hosts 10 

agents, VM-3 hosts 20 agents, and VM-4 hosts 20 agents. 
In total, the manager communicates with 50 Agents.  
Scenario III: VM-1 hosts the manager, VM-2 hosts 10 

Agents, VM-3 hosts 10 Agents, and VM-4 hosts 10 
Agents. In total the manager communicates with 30 
Agents.  
Scenario IV: VM-1 hosts the manager, VM-2 hosts 1 

agent, VM-3 hosts 1 agent, and VM-4 hosts 3 agents. In 
total the manager communicates with 5 Agents. 

Figure 5: Manager/Agents run-time workflow 

Figure 6. CLAMBS Benchmarking components communica-

tion 



 

 

For each scenario, we monitored the CPU and memory 
consumption of the monitoring manager. The result of the 
experiments is presented in Fig. 7 and 8.  We computed 
the average CPU and memory utilization by the Manager 
for each scenario. Each evaluation scenario involving 
communication between agents and manager was run for 
duration of 30 minutes. The frequency of querying the 
agents for QoS parameters was set to 1 second. The out-
comes clearly indicate that the manager performance is 
stable with increase in the number of active agents. The 
CPU utilization grows up from 6.25% when manager is 
communicating with 5 Agents to 10.92% when the num-
ber of agents is 85. Likewise, memory consumed by the 
manager increased marginally from 177.5 MB with 5 
agents to 177.85 MB with 85 agents. Moreover, we note, 
the manager or the agents during the experiment did not 
encounter any crash or malfunction. These outcomes 
clearly validate the resource efficient operation of the 
CLAMBS framework and its ability and suitability to 
scale across multi-cloud environments. 

In essence, we are motivated by the fact that there is a 
need for monitoring specific processes across cloud layers 
in multi-cloud environments. The proposed framework 
namely CLAMBS demonstrates its capability to achieve 
this goal by enabling cross-layer monitoring in multi-
cloud environments. Experimental evaluations of the 
CLAMBS framework show a steady scalability of the 

monitoring manger while handling data from 5, 30, 50 
and 85 agents simultaneously. Additionally, we note that 
the resource requirements of the CLAMBS agent did not 
increase significantly when testing in environments with 
5 and 85 agents.  

CLAMBS Benchmarking Agent 

To demonstrate CLAMBS benchmarking ability, we 
benchmark the network performance between data cen-
ters in different locations based on the experimental setup 
presented earlier. 

Data Download Latency- Concurrently, CLAMBS man-
ager starts downloading data from agents in Singapore 
and US-Virginia data centers. Each request indicates what 
size of data is to be downloaded (50MB, 100MB, or 
200MB). As presented in Fig. 9, CLAMBS agent in Singa-
pore data center provided faster data download compar-
ing to CLAMBS agent in US-Virginia. Moreover, we ob-
served that as the data size increase, the data transfer la-
tency from CLAMBS agent in US-Virginia also increases. 
Such observations are expected to have a major impact on 
both service provider and service client. 

Data Upload Latency – experiments as shown in Fig. 10   
demonstrates how network traffic benchmarking has the 
potential to drive preferences of both service provider 
and service client. Uploading 50MB, 100MB, and 200MB 
files from Sydney to Singapore show shorter latency 
times comparing to uploading the same size of data to 
US-Singapore.  

Download/Upload Bandwidth – experimental results as 
shown in Fig. 11, presents the outcome of up-
load/download bandwidth between Singapore, Sydney 
and US-Virginia. With 50MB, 100MB, and 200MB size of 

Figure 7: Manager Memory Utilization in MB 

Figure 8: Manager CPU Utilization in Percentage 

Figure 9. Data Download Network Latency (Time in Seconds) 

Figure 10. : Data Upload Network Latency (Time in Seconds) 



 

 

data being transferred, network bandwidth between Syd-
ney and Singapore remains the same at 8 KB/s. Similarly, 
the network bandwidth between Sydney and US-Virginia 
is 6 KB/s for the different data sizes transferred. Alt-
hough, this is basically a proof-of-concept where the 
CLAMBS benchmarking capability enables the user to 
prefer a location over another, in our experimentation 
scenario Singapore site measured significantly better per-
formance over US-Virginia. 

Analysis - Referring to AWS documentation, network 
performance for small instance types are low. Moreover, 
such types of instances are not listed under eligible in-
stances for enhanced network performance. Unlike other 
instance types (e.g. c3.large, c3.xlarge, c3.2xlarge, 
c3.4xlarge, c3.8xlarge, i2.xlarge, i2.2xlarge, i2.4xlarge, 
i2.8xlarge, r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, or 
r3.8xlarge), small instance type does not have a feature of 
enabling enhanced network performance. This limitation 
was reflected by our experiments by having low network 
bandwidth across different data centers. Furthermore, 
VM requests serving priority by the hosting server at 
Amazon platform is low which means that the perfor-
mance is minimal for such small instances.  

CLAMBS Manager Scalability under Benchmarking- We 
also computed the average CPU and memory utilization 
by the CLAMBS Manager while performing benchmark-
ing of application’s network performance. We used a file 
size of 100 KB enabling us to repeat the operation of data 
transfer between manager and agents located in different 
in remote data centers locations. In this scenario, we uti-
lized the CLAMBS monitoring agents to monitor the per-
formance of the CLAMBS manager. Fig. 12 shows the 
outcome of our experiments. As indicated by the experi-
mental outcome and similar to the Manager’s perfor-
mance while monitoring, the overheads imposed by the 
benchmarking component of the manager on the underly-
ing system memory consumption is not very significant. 
The CPU consumption of the manager during bench-
marking scenario was also not significant and ranged 
between 2 – 5%. 

The experimental outcomes validate the CLAMBS 
framework’s ability to be a reliable, resource efficient 
cross-layer monitoring and benchmarking system that 
can scale across multiple cloud provider environments. 

7 CONCLUSION 

This paper presented CLAMBS, a novel cross-layer multi-
cloud application monitoring and benchmarking as-a-
service framework.  CLAMBS enables efficient QoS moni-
toring and benchmarking of cloud application compo-
nents hosted on multiple clouds and across multiple 
cloud layers.  Using experimentation and prototype im-
plementation, we show that CLAMBS is flexible and re-
source efficient and can be used to monitor several appli-
cations and cloud resources distributed across multiple 
clouds. 

As future work, we intend to integrate CLAMBS with-
in a cloud orchestration framework to provide QoS-
awareness for cloud admission control and scheduling of 
Big Data applications in a highly distributed multi-cloud 
environment. 
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