
An Extended SNMP Based IoT Context-Aware 
Model for Dynamic Adaptability of Embedded 

Systems Software

Camille Jaggernauth
Novax Industries Corp.

l202-1525 Cliveden Ave.
Delta, B.C,

Canada V3M 6L2
camille.jaggernauth@novax.com

Douglas Gubbe
Novax Industries Corp.
202-1525 Cliveden Ave.

Delta, B.C,
Canada V3M 6L2

Abstract—This  paper  introduces  a  context-aware  IoT 
(Internet  of  Things)  model  featuring  context  collector,  context 
controller and cognitive engine components. This model  supplies 
internet connectivity to previously published research, forming a 
complete,  distributed, system solution for dynamic adaptability 
of  embedded  systems  software  for  resource  constrained 
hardware. We present the updated system model and proof of 
concept  results  for  a  traffic  control  system using  the  SCOOT 
algorithm (Split Cycle and Offset Optimization Technique).

Keywords—IoT;  SNMP;  context-aware;  dynamic  adaptability;  
embedded systems software

I. INTRODUCTION

In  our  previous  research  we  introduced  a  dynamically 
adaptable  context-aware  architecture  which  improves  the 
application software's flexibility and responsiveness according 
different user requirements, varying operational conditions and 
easy update of embedded system software.  This architecture 
was  designed  for  resource  constrained,  low footprint  (code-
space),  single  processor,  potentially  energy-aware,  solutions 
e.g.  wireless  sensor  networks,  mature  systems,  cost-aware 
solutions and legacy implementations.  Context is  defined as 
changeable and characterizing information such as sensor data 
[1],[2],[3]. 

In this work we add an IoT (Internet of Things) component 
based  on  extended  SNMP  (Simple  Network  Management 
Protocol)  and  the  original  context-aware  model  [5].   The 
combined  model  features  the  original  ITS  (Intelligent 
Transportation System) component  and a new IoT component 
(Figure 1). ITS systems provide innovative services for better 
traffic  and  transportation  management.  An  ITS  system may 
comprise   audible  pedestrian  systems,  traffic  controller 
hardware,  remote  SCOOT  in-stations  and  out-stations  and 
central  management  software.  SCOOT  is  an  algorithm  that 
optimizes  traffic  control  operation  by  using  traffic  queue 
occupancy and local  conditions including error  conditions to 
modify  traffic  signal  controller  hardware  signal  operation 

(red/green/amber  lights  operation,  walk,  don't  walk,  flashing 
don't walk audible pedestrian states) [4].

The innovation in the IoT model is its enabling of internet 
connectivity of the resourced constrained hardware that  it  is 
serially  tethered  to.  The  IoT  model's  design  as  part  of  a 
complete  system  solution  ensures  the  overall  architecture's 
code  uniformity,  readability,  modularity,  extensibility  and 
maintainability.  The design shares the advantages of the ITS 
model in that it is low latency (optimized operation), low code 
complexity (as per McCabe's complexity metric) and can share 
the same configuration files and utilities  for  configuring the 
cognitive engine (reducing development costs).

II. IOT CONTEXT-AWARE MODEL AND SYTEM SETUP

The IoT model is shown in Figure 1. The context-collectors 
are sensor/system inputs. In  this paper the context collectors 
are the green light data, error info and scoot data as shown in 
Table 1. There is also local context data from the ITS hardware 
BAC (Button Audio Conflict) and BS (Button Stuck) as shown 
in Table 3.The context-controllers are control sequences and 
are the Force and Demand data shown in Table 2 and local ITS 
controllers  vibe,  led and  logging  as  shown in Table  3.  The 
cognitive  engine  is  responsible  for  enabling  dynamic 
adaptability  using  Fuzzy  Cognitive  Map  logic  –  by  using 
phi/delta operators to assign user configurable weights to the 
different combination of collectors to determine a final result 
e.g. error flag [1]. In Table 3 the user selects what values of 
BAC and BS determine which particular output. This logic is 
coded into a logic map which is interpreted and executed by 
the cognitive engine. In the IoT model the context-collector is 
integrated  with  the  cognitive  engine  which  also  performs 
buffering and averaging of SCOOT samples.

SNMP  was  chosen  because  the  oid  (object  identifier) 
components  of  its  mibs  (management  information  database) 
map  directly  to  our  existing  model's  context  element.  The 
traffic  controller mib in this paper is  a  public mib. SNMP's 
extensibility  allows  for  the  seamless  implementation  of  the 

978-1-5090-3672-1/17/$31.00 ©2017 IEEE 211



Based on the oid received

Store the value in a oid specific file

Value is not persistent 

Exit

collector and controller software functionality.  The cognitive 
engine is a stand-alone linux based program. 

SNMP  comprises  a  feature-rich  set  including  an  snmpd 
agent  daemon  (used  by  context  controllers/collectors), 
trapd/inform  daemon  (used  by  context  collectors),  get/set 
command line applications (used by context controllers) . The 
SNMP snmpd agent can be extended in numerous ways. In this 
paper we used a) recompiling the agent to include context mib 
modules and b) using bash scripts in the pass mode. The ITS 
hardware platform is a MCU 8-bit, 128 KB Flash embedded 
processor.  The  IoT  micro-controller  hardware  platform  is  a 
75MHz  ARM processor running Linux w/ 8 MB Flash, 16 
MB SDRAM.

Figure 1. System Architecture.

III FIRMWARE ARCHITECTURE DESIGN

Table 1 and 2 show the message flow between the ITS/IoT 
micro-controller  (serial)  (column 2) and the remote SCOOT 
system  (SNMP)  (column  3).  The  local  traffic  controller 
hardware  supplies  Green  Light  data,  error  conditions  and 
SCOOT detector  occupancy and the remote  SCOOT system 
responds with Force and Demand data for the traffic controller 
hardware.  Figure  2  shows  the  pseudo  code  for  the  context 
controllers. Additional (not shown) context-controllers include 

SCOOT reporting  intervals,  port  ids,  ip  addresses.  Figure  3 
shows the pseudo code for the cognitive engine. Table 3 shows 
how  local  error  conditions  can  be  combined  to  provide 
different  SCOOT errors  (setting  different  priority  errors)  as 
well  as  local  ITS  responses  (actuating  vibe,  led,  logging). 
Table 3 is usually coded into a logic map which is downloaded 
to  both  the  ITS  and IOT hardware  and  interpreted  by their 
respective cognitive engines.

TABLE I. REQUEST MESSAGE

Field Serial Data SNMP OID

Byte 1

Bits 1-4 Address 1.3.6.1.4.1.13267.3.2.2.2

Byte 2

Bits 1-8
Force  Stages 
1-8

1.3.6.1.4.1.13267.3.2.4.2.1.5

Byte 3

Bits 1-4
Demand 
Stages 1-4

1.3.6.1.4.1.13267.3.2.4.2.1.4

TABLE II. RESPONSE MESSAGE

Field Serial Data SNMP  OID

Byte 1

Bits 1-4 Address 1.3.6.1.4.1.13267.3.2.2.2

Byte 2

Bits 1-8
Green  Stages 
1-8

1.3.6.1.4.1.13267.3.2.5.1.1.3

Byte 3

Bits 8
Critical Error 
Condition 

1.3.6.1.4.1.13267.3.2.5.1.1.29

Bits 7
Medium 
Error 
Condition 

1.3.6.1.4.1.13267.3.2.5.1.1.31

Bits 6
Low Error 
Condition 

1.3.6.1.4.1.13267.3.2.5.1.1.33

Bytes 4-7

Bits 1-8
Scoot 
Detector 
Data N

1.3.6.1.4.1.13267.3.2.5.1.1.32

Figure 2. Pseudo code for IoT model context controller.

212



Based on the type of input argument

Either

Report “still alive” using snmp inform 

Or

Fetch the logic map

Parse and interpret logic map

Evaluate map for setting error conditions

Update snmp inform args with new values

If ITS values have changed

    Update snmp inform args with new values

Send snmp inform message if there are new args

104 71.801000 a.b.c.d w.x.y.z SNMP 177

set-request 1.3.6.1.4.1.13267.3.2.4.2.1.5

Object Name: 1.3.6.1.2.1.1.3.0

Value (Timeticks): 93761

Object Name: 1.3.6.1.6.3.1.1.4.1.0 

Value (OID): 1.3.6.1.4.1.13267.3.2.6.1 

ObjectName: 1.3.6.1.4.1.13267.3.2.5.1.1.3 

Value (OctetString): 00

ObjectName: 1.3.6.1.4.1.13267.3.2.5.1.1.33

Value (Integer32): 0

ObjectName: 1.3.6.1.4.1.13267.3.2.5.1.1.32 

Value (OctetString): 0100030005010002

Figure 3. Pseudo code for IoT model cognitive engine.

TABLE III. COGNITIVE MAP LOGIC

BAC BS Action 

1 1
Turn off led
SNMP Critical Error

0 1
Turn off vibe
SNMP Medium Error

1 0
Log error condition 
SNMP Low Error 

IV RESULTS

Figure 4 and 5 show the operation of the context collectors' 
and  context  controllers'  message  flow.  Figure  4  shows  the 
wire-shark capture of snmp set message from the the remote 
SCOOT server to set the local traffic controller's force bits. 

Figure 4. SNMP context-controller messages

Figure  5  shows  the  wire-shark  capture  of  the  context-
collector  messages  sent  using  snmp  inform  to  update  the 
remote SCOOT server.  Specifically a  low error  condition is 
reported as well as new SCOOT data. 

V CONCLUSION

We have demonstrated a context-aware IOT model suitable 
for adding internet connectivity for resource  hardware for an 
ITS industry scenario. The use of the cognitive engine in the 
IoT  model  allows  for  the  adding  of  user  configurable  local 

context  to  the  SCOOT  algorithm.  Future  work  includes 
research into augmenting the system model's security.

Figure 5. SNMP context-controller messages

ACKNOWLEDGMENT

The authors wish to thank Novax Industries Corporation for 
the  use  of  their  ITS  (Intelligent  Transportation  System) 
platform for proof of concept implementation.

REFERENCES

[1] C. Jaggernauth, B. Kaminska and D. Gubbe, “A Context-Aware Model 
for  Dynamic  Adaptability  of  Software  for  Embedded  Systems,” 
International  Journal  of  Computer  (IJC),  vol.  19,  mo  1,  pp.  91-113, 
November 2015.

[2] A.K. Dey, G.D. Abowd and D. Salber, “A conceptual framework and a 
toolkit  for  supporting  the  rapid  prototyping  of  context-aware 
applications.” Hum.-Comput. Interact, vol. 16-2, pp 97-166, 2001.

[3] P. Inverardi and M. Tivoli,  “The Future of Software: Adaptation and 
Dependability.” ISSSE 2006-2008, LNCS 5413, Springer-Verlag Berlin, 
Heidelberg, pp 1-31, 2009.

[4] SCOOT. Scoot Systems. Internet: http://www.scoot-utc.com/,  [Oct 27, 
2016]..

[5] SNMP. Net-SNMP. Internet: http://www.net-snmp.org/, [Oct 27, 2016].

BIOGRAPHIES

Camille Jaggernauth  (PhD) is the Senior Software Engineer 
at Novax Industries Corp.

Douglas Gubbe (DiplT) is the CTO at Novax Industries Corp.

213


