NAMA : SYUKRAN RIZKI

NIM : 09011181520019

KELAS : SK7A

Design and implementation of NMS using SNMP for AMI network device monitoring

Young-Il Kim, So-Jeong Park, Nam-Jun Jung, Moon-Suk Choi, and Byung-Seok Park Smart Power Distribution Laboratory, KEPCO Research Institute, KEPCO

Daejeon, Republic of Korea

yi.kim@kepco.co.kr

Paper ini memperkenalkan AMI NMS (Network Management System) untuk memantau status operasi jaringan DCU dan modem PLC untuk operasi jaringan AMI. AMI NMS mengumpulkan data properti dari perangkat jaringan, informasi topologi jaringan, informasi kinerja komunikasi, informasi kesalahan, dan lain-lain menggunakan SNMP (Simple Network Management Protocol). Analisis data yang dikumpulkan dan mengontrol perangkat jaringan dengan akses remote. Makalah ini memperkenalkan fungsionalitas utama, konteks dirancang, layar layanan diimplementasikan dan hasilnya operasional.

Framework

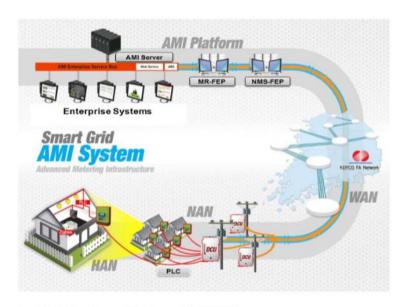


Fig. 1. AMI system architecture of KEPCO [3].

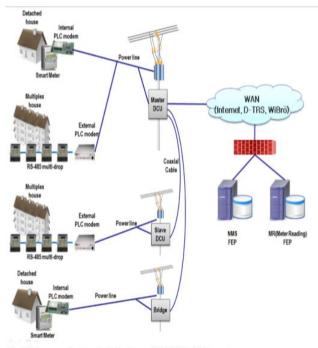


Fig 2. Communication Architecture of KEPCO AMR system.

Gambar 1 diatas menunjukkan arsitektur sistem AMI dari Korea. DCU (*Data Concentration Unit*) dipasang pada tiang beton dan berkomunikasi dengan PLC modem yang mengumpulkan data dari smart meter dengan DLMS / COSEM protocol.

Hasil

AMI NMS terdiri dari NMS FEP, database, dan web server dan diinstal pada setiap kantor cabang KEPCO. NMS FEP mengumpulkan informasi jaringan dari DCU dan menerima informasi perangkap oleh SNMP. Sebuah informasi yang dikumpulkan disimpan dalam database server dan memberikan kepada operator jaringan dengan web server. NMS FEP melakukan tes ping dari DCU setiap 15 menit dan mengumpulkan BPS modem setiap 30 menit.



Fig. 7. Web-based total dashboard screen of AMI NMS.

Gambar 8 menunjukkan status kegagalan DCU dan modem. DCU detail menunjukkan informasi DCU seperti DCU ID, IP, MAC, jumlah modem, informasi kegagalan, terjadi tanggal, waktu durasi, perintah ping, dan reset perintah. Modem detail menunjukkan informasi modem seperti modem MAC, DCU ID, DCU IP, jumlah meter, informasi kegagalan, Terjadi tanggal, waktu durasi, jalan orang tua, MAC ping perintah, perintah BPS, dan sebagainya.

ailure Stat	us													
DCU									Modem		Mete			
Ping		SNMP Agen	nt Modem Fail	WANE	Fail	TDU Fail	Fail C	Comm. Fail	BPS Lo	w R	RS485. F		t Version	Test Versio
3		0	0	0		0		0	2		<u>87</u>		5	0
CU Detail I	nforma	tion					a	. NOM : Nun	nber of Modems					Excel Downlo
Branch	Туре	DCU-ID	DCU-IP	DCU-MA	C B-1	ype DC	J Time	NOM(a)	Failure Info	. Occuring	Date	Duration Tim	ne Coj	nmands
남서물본부직할	DCU(M)	9422P2910	10.143.40.74	94:51:8F:03	OE:D1 200	만호		12	Ping Failure	2016-04-01	13:45	48일 11시간 2	7분 Ping	Reset
서울본부직할	DCU(M)	<u>9723P9410</u>	00 10.146.129.78	94:51:8F:03	O5:2C 200	만호		15	Ping Failure	2016-04-07	07:45	42일 17시간 2	7분 Ping	Reset
강서지사	DCU(M)	<u>9324Y1410</u>	00 10.145.129.10	7 94:51:8F:03	24'A1 200	연호		6	Ping Failure	2016-05-19	15:00	10시간 12분	Ping	Reset
lodem Det	ail Infor	mation					ı	o. NOMt: Nu	ımber of Meters					Excel Downlo
Branch	Туу	pe	Modem-MAC	DCU-ID	DCU-IP	B-Type	B-Type NOMt		Failure Info.	Occuring Date	uring Date Duration Time		Commands	
남서물본부직할	MODEM	(표준형) <u>E</u> (0:AE:ED:60:87:D4	9321H87201	10.143.68.	43 200만호	1/	1	BPS Low	2016-04-20 06:31	309	일 6시간 41분	P. Path	M. Ping B
		DEM E		0624820200		99 200만並	1/		BPS Low	2016-05-14 06:30		6시간 42분	P. Path	M. Ping B

Fig. 8. Failure status and detail information screen.

Gambar 9 menunjukkan topologi jaringan DCU dan modem. Jaringan layar diagram topologi membantu operator untuk analisis konektivitas jaringan dan BPS grafik dan menentukan apakah bridge PLC diperlukan atau tidak.

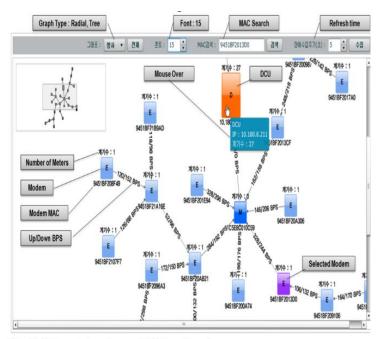


Fig. 9. Network topology of DCU and modem screen.

Tujuan utama dari sistem AMR adalah koleksi otomatis membaca bulanan meteran biasa tanpa mengunjungi rumah pelanggan.

 $\label{eq:table_in_table} TABLE~II.$ In salled Number of DCU/Modem and Oerating Rate

Branch Office	Quantity of DCU	Quantity of Modern	Op.Rate (%) ofDCU	Op.Rate(%) ofModem	
Branch #1	5,175	53,048	99.6	99.5	
Branch #2	3,617	41,577	99.7	99.5	
Branch #3	3,804	34,342	99.5	96	
Branch #4	6,045	66,464	98.7	99	
Branch #5	1,362	23,200	99.8	99.6	
Branch #6	4,700	62,412	99.4	98.6	
Branch #7	2,861	53,723	99.1	98.3	
Branch #8	2,007	28,731	99.9	94.5	
Branch #9	5,475	79,167	99.5	98.7	
Branch #10	2,368	43,792	99.8	98.3	
Branch #11	5,884	99,362	99.7	98.4	
Branch #12	1,487	27,035	99.3	97.6	
Branch #13	3,829	38,344	98.6	97.7	
Branch #14	2,031	35,190	98.5	96.9	
Sum. & Avg.	50,645	686,387	99.4	98.0	

Menurut analisis dari paper ini, dinilai daerah operasi yang rendah memiliki populasi yang tinggi. Modem terhubung ke banyak meter dan DCU terhubung ke banyak modem pada daerah itu. Di daerah padat. Tingkat operasi akan lebih tinggi dengan memasang perangkat bridge PLC pada titik lemah menggunakan layar topologi jaringan dan fungsi analisis NMS.

Paper ini memperkenalkan AMI NMS dari KEPCO yang mengelola DCU dan modem untuk pembacaan meter pelanggan tegangan rendah. AMI NMS mengumpulkan informasi status komunikasi DCUs setiap 15 menit dan modem setiap 30 menit. Tingkat kegagalan memiliki tiga tahap dan kegagalan digandakan dikeluarkan oleh modul redundancy check untuk memberikan daftar kegagalan yang dioptimalkan untuk operator. Seorang operator bisa mengelola jaringan metering yang lebih stabil dengan menggunakan fungsi NMS seperti daftar kegagalan real time, kegagalan penanganan dengan remote control dan *communication tree* dan analisis kinerja dengan diagram topologi jaringan.