KARYA ILMIAH

MANAJEMEN JARINGAN

Analisa Traffic SNMP menggunakan Wireshark

DISUSUN OLEH:

M. AFRIA ALIM SAPUTRA (09011281520100)

SISTEM KOMPUTER FAKULTAS ILMU KOMPUTER UNIVERSITAS SRIWIJAYA PALEMBANG 2018/2019

BAB. I Pendahuluan

1.1 Latar Belakang

Dalam perkembangan teknologi informasi, khususnya jaringan semakin hari semakin cepat. Untuk memakasimalkan kecepatan jaringan tersebut agar tidak down dalam suatu waktu sehingga dapat merugikan pengguna maka diperlukan pengaturan yang baik dan pemantauan secara berkala.

Semakin besar suatu jaringan maka semakin banyak juga device yang digunakan, sehingga diperlukan adanya manajemen jaringan yang baik dan sistem monitoring yang dapat memperlihatkan bagaimana keadaan jaringan tersebut.

Salah satu protokol yang digunakan untuk memanajemen jaringan adalah Simple Network Management Protocol (SNMP). SNMP berfungsi untuk memantau dan mengatur jaringan komputer secara sistematis kepada pengguna.

1.2 Tujuan

Adapun yang menjadi tujuan dalam membuat karya ilmiah ini adalah untuk menambah pengetahuan tentang bagaimana cara kerja SNMP dalam memanajemen jaringan serta dapat memvisualisasikannya.

BAB. II LANDASAN TEORI

2.1 SNMP

SNMP (Simple Network Management Protocol) adalah sebuah protokol standar manajemen jaringan pada application layer TCP/IP supaya informasi yang dibutuhkan untuk manajemen jaringan bisa dikirim menggunakan TCP/IP. Berfungsi memantau dan mengatur jaringan komputernya secara sistematis dari jarak jauh atau dalam satu pusat kontrol saja dengan cara menggumpulkan data dan melakukan penetapan terhadap variabel-variabel dalam elemen jaringan yang dikelola.

A. Perangkat SNMP

- Managed Nodes

Node biasa pada jaringan yang dilengkapi dengan software supaya dapat diatur menggunakan SNMP. Berupa perangkat TCP/IP biasa dan disebut managed devices.

- Network Management Station (NMS)

Merupakan perangkat jaringan khusus yang menjalankan software tertentu supaya dapat mengatur managed nodes. Pada jaringan harus ada satu atau lebih NMS karena mereka adalah perangkat yang sebenarnya "menjalankan" SNMP. Berupa perangkat jaringan yang dapat berkomunikasi menggunakan TCP/IP, sepanjang diprogram dengan software SNMP.

B. Elemen-elemen SNMP

- Manajer

Pelaksana dan manajemen jaringan. Pada kenyataannya manager ini merupakan komputer biasa yang ada pada jaringan yang mengoperaksikan perangkat lunak untuk manajemen jaringan. Manajer ini terdiri atas satu proses atau lebih yang berkomunikasi dengan agen-agennya dan dalam jaringan. Manajer akan mengumpulkan informasi dari agen dari jaringan yang diminta oleh administrator saja bukan semua informasi yang dimiliki agen.

- MIB(Manager Information Base)

Struktur basis data variabel dari elemen jaringan yang dikelola. Struktrur ini bersifat hierarki dan memiliki aturan sedemikian rupa sehingga informasi setiap variabel dapat dikelola atau ditetapkan dengan mudah. sebuah pohon abstrak yang memiliki sebuah akar. Akar ini tidak punya nama, item-item data secara individual membentuk daun-daunnya. Object Identifier atau ID, mengidentifikasi atau memberi nama objek-objek dalam

pohon MIB. Penamaan ini dilakukan secara unik. ID dari objek-objek tersebut mirip dengan nomor telepon yang diorganisasikan secara hirearki.

- Agen

Perangkat lunak yang dijalankan disetiap elemen jaringan yang dikelola. Setiap agen mempunyai basis data variabel yang bersifat lokal yang menerangkan keadaan dan berkas aktivitasnya dan pengaruhnya terhadap operasi.

C. Pesan pada SNMP

- GET_NEXT_REQUEST: Meminta komponen objek berikutnya dari suatu tabel atau daftar dari suatu agen
- GET_RESPONSE: Merespons get_next_request, get_request, atau set_request
- GET_REQUEST: Meminta nilai dari suatu komponen objek dari suatu agen
- SET_REQUEST: Mengeset nilai dari suatu komponen objek pada suatu agen
- TRAP: Mengirim trap (event) secara asinkron ke aplikasi manajemen jaringan. Agen dapat mengirimkan sebuah trap ketika suatu kondisi terjadi, misalnya perubahan state dari suatu perangkat, kegagalan perangkat, atau inisialisasi agen.

2.2 Wireshark

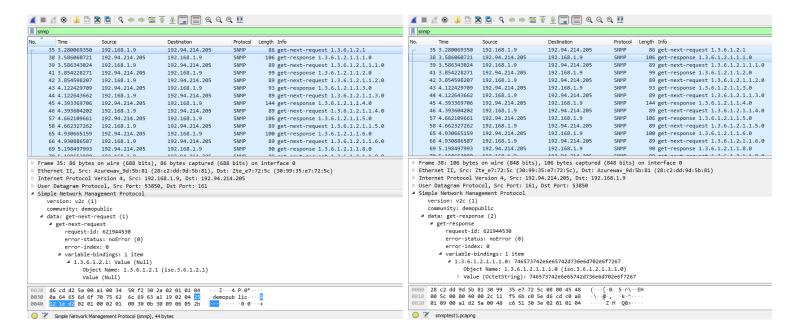
Wireshark merupakan salah satu tools atau aplikasi "Network Analyzer" atau Penganalisa Jaringan. Penganalisaan Kinerja Jaringan itu dapat melingkupi berbagai hal, mulai dari proses menangkap paket-paket data atau informasi yang berlalu-lalang dalam jaringan, sampai pada digunakan pula untuk sniffing (memperoleh informasi penting seperti password email, dll). Wireshark sendiri merupakan free tools untuk Network Analyzer yang ada saat ini.

2.3 Colasoft Capsa

Capsa adalah penganalisa jaringan portabel untuk LAN dan WLAN yang melakukan penangkapan paket secara real-time, memonitoring jaringan, analisis protokol, mendalami paket decoding, dan diagnosis. Ini menyediakan visibilitas yang komprehensif, membantu administrator jaringan atau network engineer agar cepat menentukan dan menyelesaikan masalah berbagai aplikasi, dan karena itu meningkatkan pengalaman pengguna akhir dan menjamin lingkungan jaringan produktif

BAB. III PEMBAHASAN

3.1 Capture Network Menggunakan Wireshark

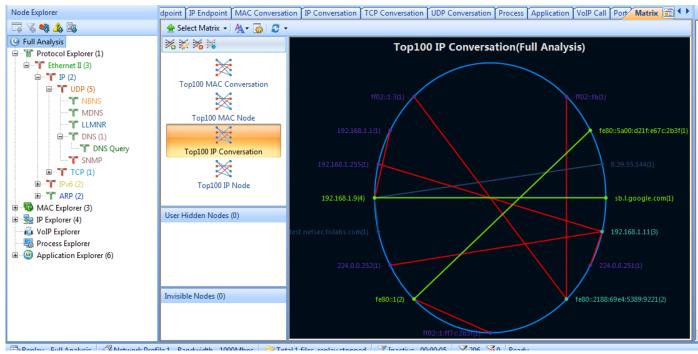

Capture dilakukan pada wifi Indihome

snmp						
	Time	Source	Destination	Protocol	Length	
	35 3.280069350	192.168.1.9	192.94.214.205	SNMP		get-next-request 1.3.6.1.2.1
	38 3.586060721	192.94.214.205	192.168.1.9	SNMP		get-response 1.3.6.1.2.1.1.1.0
	39 3.586343024	192.168.1.9	192.94.214.205	SNMP	89	get-next-request 1.3.6.1.2.1.1.1.0
	41 3.854228271	192.94.214.205	192.168.1.9	SNMP	99	get-response 1.3.6.1.2.1.1.2.0
	42 3.854598207	192.168.1.9	192.94.214.205	SNMP	89	get-next-request 1.3.6.1.2.1.1.2.0
	43 4.122429709	192.94.214.205	192.168.1.9	SNMP		get-response 1.3.6.1.2.1.1.3.0
	44 4.122643662	192.168.1.9	192.94.214.205	SNMP	89	get-next-request 1.3.6.1.2.1.1.3.0
	45 4.393369706	192.94.214.205	192.168.1.9	SNMP	144	get-response 1.3.6.1.2.1.1.4.0
	46 4.393604202	192.168.1.9	192.94.214.205	SNMP		get-next-request 1.3.6.1.2.1.1.4.0
	57 4.662109661	192.94.214.205	192.168.1.9	SNMP	106	get-response 1.3.6.1.2.1.1.5.0
	58 4.662327262	192.168.1.9	192.94.214.205	SNMP	89	get-next-request 1.3.6.1.2.1.1.5.0
	65 4.930665159	192.94.214.205	192.168.1.9	SNMP	100	get-response 1.3.6.1.2.1.1.6.0
	66 4.930886587	192.168.1.9	192.94.214.205	SNMP	89	get-next-request 1.3.6.1.2.1.1.6.0
	69 5.198497993	192.94.214.205	192.168.1.9	SNMP	90	get-response 1.3.6.1.2.1.1.8.0
	70 5.198652080	192.168.1.9	192.94.214.205	SNMP	89	get-next-request 1.3.6.1.2.1.1.8.0
	72 5.466180221	192.94.214.205	192.168.1.9	SNMP	97	get-response 1.3.6.1.2.1.1.9.1.2.1
	73 5.466362638	192.168.1.9	192.94.214.205	SNMP	91	get-next-request 1.3.6.1.2.1.1.9.1.2.1
	74 5.734550720	192.94.214.205	192.168.1.9	SNMP	100	get-response 1.3.6.1.2.1.1.9.1.2.2
	75 5.734725566	192.168.1.9	192.94.214.205	SNMP	91	get-next-request 1.3.6.1.2.1.1.9.1.2.2
	76 6.002403810	192.94.214.205	192.168.1.9	SNMP	100	get-response 1.3.6.1.2.1.1.9.1.2.3
	77 6.002647630	192.168.1.9	192.94.214.205	SNMP	91	get-next-request 1.3.6.1.2.1.1.9.1.2.3
	79 6.270564558	192.94.214.205	192.168.1.9	SNMP		get-response 1.3.6.1.2.1.1.9.1.2.4
	80 6.270786850	192.168.1.9	192.94.214.205	SNMP	91	get-next-request 1.3.6.1.2.1.1.9.1.2.4
	81 6.538542683	192.94.214.205	192.168.1.9	SNMP	100	get-response 1.3.6.1.2.1.1.9.1.2.5
	82 6.538760116	192.168.1.9	192.94.214.205	SNMP	91	get-next-request 1.3.6.1.2.1.1.9.1.2.5
	85 6 8060718/13	192 94 214 205	102 168 1 0	SMMD	125	met-response 1 3 6 1 2 1 1 9 1 3 1
r	ame 35: 86 bytes	on wire (688 bits),	, 86 bytes captured (6	88 bits) o	n inter	face 0
t	hernet II, Src:	Azurewav_9d:5b:81 (2	28:c2:dd:9d:5b:81), Ds	t: Zte_e7:	72:5c (30:99:35:e7:72:5c)
1	ternet Protocol	Version 4, Src: 192.	168.1.9, Dst: 192.94.	214.205		
5	er Datagram Prot	ocol, Src Port: 5385	0, Dst Port: 161			
i	mple Network Man	agement Protocol				
_	de ed do E- 00	-1 00 24 E0 f0 20	25 82 81 81 84 7	· · · 4 P · 0* · ·		
9		70 75 62 6c 69 63		opub lic···		
,		00 02 01 00 30 0b		0.0.		

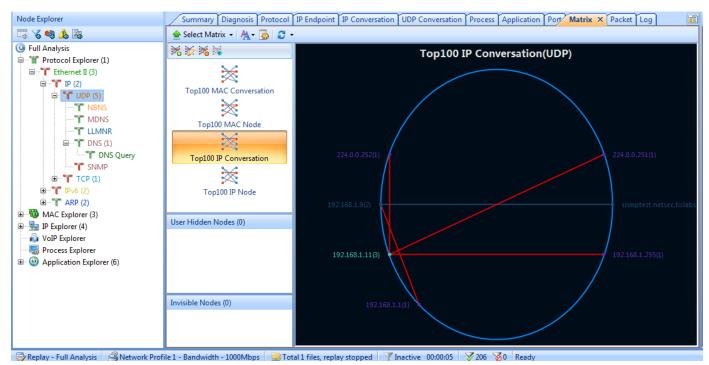
(Gambar 1: Hasil Capture Pcap Wireshark)

Pada gambar diatas dapat ditetapkan bahwa relasi manager (ip address source 192.168.1.9 dengan MAC adress 28:c2:dd:9d:5b:81) dan agent (ip address destination 192.94.214.205 dengan MAC address 30:99:35:e7:72:5c).

SNMP OID	Description			
1.3.6.1.2.1	Structure of Management Information Version 2			
	(SMIv2) Management Information Bases (MIBs)			
1.3.6.1.2.1.1.1.0	ianafinisherMIB MODULE-IDENTITY			
1.3.6.1.2.1.1.2.0	ituAlarmTc MODULE-IDENTITY			
1.3.6.1.2.1.1.3.0	entityStateTc MODULE-IDENTITY			
1.3.6.1.2.1.1.4.0	pktcIetfMtaMib MODULE-IDENTITY			
1.3.6.1.2.1.1.5.0	sipUAMIB MODULE-IDENTITY			
1.3.6.1.2.1.1.6.0	t11ZoneServerMIB MODULE-IDENTITY			
1.3.6.1.2.1.1.8.0	pwEnetStdMIB MODULE-IDENTITY			
1.3.6.1.2.1.1.9.1.2.1	ospfv3Groups			
1.3.6.1.2.1.1.9.1.2.2	ospfv3Compliances			
1.3.6.1.6.3.15.1.2.1	usmUserSpinLock OBJECT-TYPE			


(Gambar 2: Isi informasi dari Manager dan Agent)

Manager pada nomor 35 mengirimkan pesan berupa get-next-request 1.3.6.1.2.1 (Structure of Management Information Version 2 (SMIv2) Management Information Bases (MIBs)) ke agent, agent pada nomor 38 membalas pesan berupa get-response 1.3.6.1.2.1.1.1.0 (sysDescr) ke manager. get-response (OID) dikirim oleh SNMP agent yang akan menanggapi get-request (OID), get-next-request (OID), set-request (OID).


Setiap ada request dari manager ke agen maka request-id akan berbeda, seperti pada no.35 dengan no.38 memilki request-id: 621944530, pada no.39 dengan no.41 memiliki request-id: 621944531, dan seterusnya.

Perbedaan dari get-request / get-next-request dan get-response adalah dari nilai value-nya, get-request / get-next-request memiliki nilai value yaitu Null sedangkan pada get-response memiliki nilai value berupa nomor OID yang ada di dalam database agent (MIB).

3.2 Visualization Pcap menggunakan Colasof Capsa

(Gambar 3: Matrix)

(Gambar 4: Matrix pada protokol UDP)

BAB. IV KESIMPULAN

Dari uraian di atas dapat ditarik berberapa kesimpulan yaitu :

- 1. SNMP adalah protokol yang dirancang untuk memberikan kemampuan kepada pengguna untuk memantau dan mengatur jaringan komputernya secara sistematis.
- 2. Wireshark merupakan salah satu tools atau aplikasi "Network Analyzer" atau Penganalisa Jaringan.
- 3. Colasoft Capsa dapat menvisualisasikan hasil capture waireshark.
- 4. Untuk membedakan antara get-request dengan get-response adalah pada nilai value-nya.
- 5. Get-response memiliki request-id yang sama pada get-request sebelumnya dan akan berbeda pada get-request selanjutnya.

DAFTAR PUSTAKA

- Handoyo, Tri. Pengertian SNMP-Simple Network Management Protocol. 2012. http://herliandiserli.blogspot.com/2012/06/pengertian-snmp-simple-network.html
- Koesriputranto, Astandro. Apa itu Wireshark, Apa Kegunaannya, dan Bagaimana Cara menggunakannya ?. 2013. http://akfive.blogspot.com/2013/04/apa-itu-wireshark-apa-kegunaannya-dan.html
- Rukiyat, muhammad. Software Colasoft Capsa untuk Monitoring Jaringan Komputer. 2015.

https://www.kompasiana.com/ikujuki/55281aa46ea834f6308b4571/software-colasoft-capsa-untuk-monitoring-jaringan-komputer